functional-programming - 在 OCaml 中实现 Okasaki 的自举堆,为什么不编译?

标签 functional-programming ocaml functor

(可以在 https://gist.github.com/4044467 找到一个最小的非编译示例,请参阅下面的更多背景信息。)

我正在尝试实现冈崎的纯功能数据结构第 10 章中介绍的引导堆。以下是我的非编译代码的简化版本。

我们要实现一个具有以下签名的堆:

module type ORDERED =
sig
  type t
  val compare : t -> t -> int
end

module type HEAP =
sig
  module Elem : ORDERED

  type heap

  val empty : heap
  val insert : Elem.t -> heap -> heap
  val find_min : heap -> Elem.t
  val delete_min : heap -> heap
end

我们说一个数据结构是自举当它的实现依赖于同一种数据结构的另一个实现时。所以我们有一个这样的堆(实际的实现并不重要):
module SomeHeap (Element : ORDERED) : (HEAP with module Elem = Element) =
struct
  module Elem = Element

  type heap

  let empty = failwith "skipped"
  let insert = failwith "skipped"
  let find_min = failwith "skipped"
  let delete_min = failwith "skipped"
end 

然后,我们将要实现的引导堆,它可以依赖于任何堆实现,应该具有以下签名:
module BootstrappedHeap
  (MakeH : functor (Element : ORDERED) -> HEAP with module Elem = Element)
  (Element : ORDERED) : (HEAP with module Elem = Element)

所以我们可以这样使用它:
module StringHeap = BootstrappedHeap(SomeHeap)(String)

根据 Okasaki 的说法,BootstrappedHeap 的实现是这样的:
module BootstrappedHeap
  (MakeH : functor (Element : ORDERED) -> HEAP with module Elem = Element)
  (Element : ORDERED) : (HEAP with module Elem = Element) =
struct
  module Elem = Element

  module rec BootstrappedElem :
  sig
    type t =
      | E
      | H of Elem.t * PrimH.heap
    val compare : t -> t -> int
  end =
  struct
    type t =
      | E
      | H of Elem.t * PrimH.heap
    let compare t1 t2 = match t1, t2 with
      | H (x, _), H (y, _) -> Elem.compare x y
      | _ -> failwith "unreachable"
  end
  and PrimH : (HEAP with module Elem = BootstrappedElem) =
    MakeH(BootstrappedElem)

  type heap

  let empty = failwith "not implemented"
  let insert = failwith "not implemented"
  let find_min = failwith "not implemented"
  let delete_min = failwith "not implemented"
end

但这不是编译!错误信息是:
File "ordered.ml", line 52, characters 15-55:
Error: In this `with' constraint, the new definition of Elem
       does not match its original definition in the constrained signature:
       Modules do not match:
         sig type t = BootstrappedElem.t end
       is not included in
         ORDERED
       The field `compare' is required but not provided

第52行是行
and PrimH : (HEAP with module Elem = BootstrappedElem) =

我认为 BootstrappedElem确实实现了ORDERED因为它同时具有 tcompare ,但我看不出为什么编译器找不到 compare功能。

将 BootstrappedElem 的签名更改为
module rec BootstrappedElem : ORDERED

将使其编译,但这将隐藏类型构造函数 ETBootstrappedElem使后面的部分无法实现。

完整的非编译代码可以在 https://raw.github.com/gist/4044281/0ce0336c40b277e59cece43dbadb9b94ce6efdaf/ordered.ml 下载。

最佳答案

我相信这可能是类型检查器中的一个错误。我已将您的代码简化为以下示例:

module type ORDERED =
sig
  type t
  val compare : t -> t -> int
end


module type CARRY = sig
  module M : ORDERED
end

(* works *)
module HigherOrderFunctor
  (Make : functor (X : ORDERED) -> (CARRY with module M = X))
= struct
  module rec Base
    : (ORDERED with type t = string)
    = String
  and Other
    : (CARRY with module M = Base)
    = Make(Base)
end

(* does not work *)
module HigherOrderFunctor
  (Make : functor (X : ORDERED) -> (CARRY with module M = X))
= struct
  module rec Base
    : sig
      (* 'compare' seems dropped from this signature *)
      type t = string
      val compare : t -> t -> int
    end
    = String
  and Other
    : (CARRY with module M = (Base : sig type t = string val compare : t -> t -> int end))
    = Make(Base)
end

我不明白为什么第一个代码有效而第二个(似乎等效)无效。我建议您稍等一下,看看专家是否有解释(安德烈亚斯?),然后考虑发送a bug report .

在这种情况下,一种解决方案是首先绑定(bind)似乎处理不当的签名:
(* works again *)
module HigherOrderFunctor
  (Make : functor (X : ORDERED) -> (CARRY with module M = X))
= struct
  (* bind the problematic signature first *)
  module type S = sig
    type t = string
    val compare : t -> t -> int
  end

  module rec Base : S = String
  and Other : (CARRY with module M = Base) = Make(Base)
end

但是,这在您的设置中是不可能的,因为 BootstrappedElem 的签名与 BootstrappedHeap 相互递归.

一种解决方法是避免明显微妙的 with module ...构造并用简单的类型相等替换它with type Elem.t = ... :
module BootstrappedHeap
  (MakeH : functor (Element : ORDERED) -> HEAP with module Elem = Element)
  (Element : ORDERED) : (HEAP with module Elem = Element) =
struct
  module Elem = Element

  module rec BootstrappedElem :
  sig
    type t =
      | E
      | H of Elem.t * PrimH.heap
    val compare : t -> t -> int
  end =
  struct
    type t =
      | E
      | H of Elem.t * PrimH.heap
    let compare t1 t2 = match t1, t2 with
      | H (x, _), H (y, _) -> Elem.compare x y
      | _ -> failwith "unreachable"
  end
  and PrimH : (HEAP with type Elem.t = BootstrappedElem.t) =
    MakeH(BootstrappedElem)

  type heap

  let empty = failwith "not implemented"
  let insert = failwith "not implemented"
  let find_min = failwith "not implemented"
  let delete_min = failwith "not implemented"
end

您还可以避免相互递归并同时定义 BootstrappedElemBootstrappedHeap在一个递归结中,通过定义 BootstrappedElem递归内 BootstrappedHeap .
module BootstrappedHeap
  (MakeH : functor (Element : ORDERED) -> HEAP with module Elem = Element)
  (Element : ORDERED) : (HEAP with module Elem = Element) =
struct
  module rec BootstrappedHeap : sig
    module Elem : sig
      type t = E | H of Element.t * BootstrappedHeap.heap
      val compare : t -> t -> int
    end        
    include (HEAP with module Elem := Elem)
  end = struct
    module Elem = struct
      type t = E | H of Element.t * BootstrappedHeap.heap
      let compare t1 t2 = match t1, t2 with
        | H (x, _), H (y, _) -> Element.compare x y
        | _ -> failwith "unreachable"
    end
    include (MakeH(Elem) : HEAP with module Elem := Elem)
  end

  module Elem = Element

  type heap

  let empty = failwith "not implemented"
  let insert = failwith "not implemented"
  let find_min = failwith "not implemented"
  let delete_min = failwith "not implemented"
end

这种风格自然对应于您嵌入 Elem 的决定。在 HEAP签名和使用with module ...为细化。另一种解决方案是定义 HEAP作为返回签名的仿函数,用作HEAP(Elem).S ,我想可以选择不同的递归样式。并不是说这样会更好:我认为“抽象模块”样式更方便。

关于functional-programming - 在 OCaml 中实现 Okasaki 的自举堆,为什么不编译?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13304044/

相关文章:

OCaml - 什么是不健全的类型?

C++ 和 STL : Constructor Factory

c++ - 可在 CPU 或 GPU 中灵活运行的 CUDA 推力仿函数

functional-programming - 方案中没有整数的余数

haskell - 从具有函数作为 Haskell 中的字段的数据类型派生 Eq 时出现问题

OCaml ctypes 处理输出参数的惯用方式

ocaml - 关于基本文件组织

scala - 传递函数返回仿函数或单子(monad)类型的困难

scala - 是否等同于受检异常?

scala - 具有依赖类型的工厂方法