python keras - 预测时间序列,基于相似序列的历史样本很少

标签 python keras time-series

我正在尝试使用 Keras 构建一个模型,以根据传感器的类型和相同类型传感器的历史数据来预测传感器的时间序列。

下图显示了3个时间序列,由3个相同类型的传感器生成,绿色虚线是新传感器数据,垂直线是新传感器数据结束的位置。

enter image description here

我尝试编写一个 LSTM 网络,该网络根据其他传感器的历史数据进行训练,一次输入一个历史数据,但这导致 LSTM 在预测新传感器时会考虑传感器的最后一天.

所以我猜我走错了路。根据相同类型的其他时间序列的历史,仅使用少量历史样本来预测时间序列有哪些选项?

任何帮助/引用/视频将不胜感激。

更新:
我想详细说明一下,传感器“分数”(如上图所示)是根据一段时间内收集的一组特征生成的。即:

(event_1_count,event_2_count,event_3_count,days_since_last_event_1) = 分数


+----------+----+--------------+--------------+--------------+------------------------+
|sensor_id |day |event_1_count |event_2_count |event_3_count |days_since_last_event_1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 1        |0   | 2            | 1            | 0            | 0                      |
+----------+----+--------------+--------------+--------------+------------------------+
| 1        |1   | 0            | 10           | 2            | 1                      |
+----------+----+--------------+--------------+--------------+------------------------+
| 1        |2   | 0            | 1            | 0            | 2                      |
... until last day
+----------+----+--------------+--------------+--------------+------------------------+
| 2        |0   | 2            | 1            | 0            | 0                      |
+----------+----+--------------+--------------+--------------+------------------------+
| 2        |1   | 0            | 10           | 2            | 1                      |
+----------+----+--------------+--------------+--------------+------------------------+
| 2        |2   | 0            | 1            | 0            | 2                      |
... until last day
+----------+----+--------------+--------------+--------------+------------------------+
| 3        |0   | 2            | 1            | 0            | 0                      |
+----------+----+--------------+--------------+--------------+------------------------+
| 3        |1   | 0            | 10           | 2            | 1                      |
+----------+----+--------------+--------------+--------------+------------------------+
| 3        |2   | 0            | 1            | 0            | 2                      |
... until last day

然后以同样的方式收集新数据(绿线),但现在我只有前 3 天

    +----------+----+--------------+--------------+--------------+------------------------+
    |sensor_id |day |event_1_count |event_2_count |event_3_count |days_since_last_event_1 |
    +----------+----+--------------+--------------+--------------+------------------------+
    | 4        |0   | 2            | 1            | 0            | 0                      |
    +----------+----+--------------+--------------+--------------+------------------------+
    | 4        |1   | 0            | 10           | 2            | 1                      |
    +----------+----+--------------+--------------+--------------+------------------------+
    | 4        |2   | 0            | 1            | 0            | 2                      |
---END OF DATA---

很明显,我需要考虑新功能。我最初的想法是尝试学习波的“形状”,同时考虑到历史特征,并基于该模型预测新传感器数据的形状。

我分享了这个GoogleColab notebook使用@David 解决方案进行评论

最佳答案

有不同的方法,具体取决于您的具体设置和所需的输出。

版本A

如果您想要一个 LSTM 模型来获取大量数据并预测下一步,这里有一个独立的示例。

合成数据与图中显示的数据仅有些相似,但我希望它对于说明仍然有用。

上图中的预测显示了所有时间序列 block 都是已知的情况,并且对于每个时间序列 block 都预测了下一步。

下面的面板显示了更现实的情况,其中所讨论的时间序列的开始是已知的,并且一次一步地迭代地预测其余部分。显然,预测误差可能会随着时间的推移而累积和增大。

single_prediction

# import modules
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import keras
import keras.models
import keras.layers
import sklearn
import sklearn.metrics

# please load auxiliary functions defined below!
# (omitted here for better readability)

# set seed
np.random.seed(42)

# number of time series
n_samples = 5

# number of steps used for prediction
n_steps = 50

# number of epochs for LSTM training
epochs = 100

# create synthetic data
# (see bottom left panel below, very roughly resembling your data)
tab = create_data(n_samples)

# train model without first column
x_train, y_train = prepare_data(tab.iloc[:, 1:], n_steps=n_steps)
model, history = train_model(x_train, y_train, n_steps=n_steps, epochs=epochs)

# predict first column for testing
# (all chunks are known and only on time step is predicted for each)
veo = tab[0].copy().values
y_test, y_pred = predict_all(veo, model)

# predict iteratively
# (first chunk is known and new values are predicted iteratively)
vec = veo.copy()
y_iter = predict_iterative(vec, n_steps, model)

# plot results
plot_single(y_test, [y_pred, y_iter], n_steps)

版本B

如果时间序列的总长度已知且固定,并且您想要“自动完成”不完整的时间序列(图中的绿色虚线),那么同时预测许多值可能会更容易、更稳健。

但是,由于对于每个时间序列,您仅将起始 block 作为训练数据(并预测其余部分),因此这可能需要更完全了解的时间序列。

不过,由于每个时间序列在训练期间仅使用一次(并且不会分成许多连续的 block ),因此训练速度更快,并且结果看起来不错。

multi_prediction

# please load auxiliary functions defined below!
# (omitted here for better readability)

# number of time series
n_samples = 10

# create synthetic data
# (see bottom left panel below, very roughly resembling your data)
tab = create_data(n_samples)

# prepare training data
x_train = tab.iloc[:n_steps, 1:].values.T
x_train = x_train.reshape(*x_train.shape, 1)
y_train = tab.iloc[n_steps:, 1:].values.T
print(x_train.shape)  # (9, 50, 1) = old shape, 1D time series

# create additional dummy features to demonstrate usage of nD time series input data
# (feature_i = factor_i * score_i, with sum_i factor_i = 1)
feature_factors = [0.3, 0.2, 0.5]
x_train = np.dstack([x_train] + [factor*x_train for factor in feature_factors])
print(x_train.shape)  # (9, 50, 4) = new shape, original 1 + 3 new features

# create LSTM which predicts everything beyond n_steps
n_steps_out = len(tab) - n_steps
model, history = train_model(x_train, y_train, n_steps=n_steps, epochs=epochs,
                             n_steps_out=n_steps_out)

# prepare test data
x_test = tab.iloc[:n_steps, :1].values.T
x_test = x_test.reshape(*x_test.shape, 1)
x_test = np.dstack([x_test] + [factor*x_test for factor in feature_factors])
y_test = tab.iloc[n_steps:, :1].values.T[0]
y_pred = model.predict(x_test)[0]

# plot results
plot_multi(history, tab, y_pred, n_steps)

更新

嗨,Shlomi,感谢您的更新。如果我理解正确的话,你有更多的特征,而不是一维时间序列,即 nD 时间序列。事实上,这已经合并到模型中(带有部分未定义的 n_features 变量,现已更正)。我在版本 B 中添加了“创建附加虚拟特征”部分,其中虚拟特征是通过分割原始一维时间序列创建的(但也保留原始数据,对应于您的 f(...)=score,这听起来像是一个工程设计)应该有用的功能)。然后,我只在 LSTM 网络设置函数中添加了 n_features = x_train.shape[2] 。只需确保您的各个特征在输入网络之前已正确缩放(例如 [0-1])。当然,预测质量很大程度上取决于实际数据。

辅助功能

def create_data(n_samples):
    # window width for rolling average
    window = 10
    # position of change in trend
    thres = 200
    # time period of interest
    dates = pd.date_range(start='2020-02-16', end='2020-03-15', freq='H')
    # create data frame
    tab = pd.DataFrame(index=dates)
    lend = len(tab)
    lin = np.arange(lend)
    # create synthetic time series
    for ids in range(n_samples):
        trend = 4 * lin - 3 * (lin-thres) * (lin > thres)
        # scale to [0, 1] interval (approximately) for easier handling by network
        trend = 0.9 * trend / max(trend)
        noise = 0.1 * (0.1 + trend) * np.random.randn(lend)
        vec = trend + noise
        tab[ids] = vec
    # compute rolling average to get smoother variation
    tab = tab.rolling(window=window).mean().iloc[window:]
    return tab


def split_sequence(vec, n_steps=20):
    # split sequence into chunks of given size
    x_trues, y_trues = [], []
    steps = len(vec) - n_steps
    for step in range(steps):
        ilo = step
        iup = step + n_steps
        x_true, y_true = vec[ilo:iup], vec[iup]
        x_trues.append(x_true)
        y_trues.append(y_true)
    x_true = np.array(x_trues)
    y_true = np.array(y_trues)
    return x_true, y_true


def prepare_data(tab, n_steps=20):
    # convert data frame with multiple columns into chucks
    x_trues, y_trues = [], []
    if tab.ndim == 2:
        arr = np.atleast_2d(tab).T
    else:
        arr = np.atleast_2d(tab)
    for col in arr:
        x_true, y_true = split_sequence(col, n_steps=n_steps)
        x_trues.append(x_true)
        y_trues.append(y_true)
    x_true = np.vstack(x_trues)
    x_true = x_true.reshape(*x_true.shape, 1)
    y_true = np.hstack(y_trues)
    return x_true, y_true


def train_model(x_train, y_train, n_units=50, n_steps=20, epochs=200,
                n_steps_out=1):
    # get number of features from input data
    n_features = x_train.shape[2]
    # setup network
    # (feel free to use other combination of layers and parameters here)
    model = keras.models.Sequential()
    model.add(keras.layers.LSTM(n_units, activation='relu',
                                return_sequences=True,
                                input_shape=(n_steps, n_features)))
    model.add(keras.layers.LSTM(n_units, activation='relu'))
    model.add(keras.layers.Dense(n_steps_out))
    model.compile(optimizer='adam', loss='mse', metrics=['mse'])
    # train network
    history = model.fit(x_train, y_train, epochs=epochs,
                        validation_split=0.1, verbose=1)
    return model, history


def predict_all(vec, model):
    # split data
    x_test, y_test = prepare_data(vec, n_steps=n_steps)
    # use trained model to predict all data points from preceeding chunk
    y_pred = model.predict(x_test, verbose=1)
    y_pred = np.hstack(y_pred)
    return y_test, y_pred


def predict_iterative(vec, n_steps, model):
    # use last chunk to predict next value, iterate until end is reached
    y_iter = vec.copy()
    lent = len(y_iter)
    steps = lent - n_steps - 1
    for step in range(steps):
        print(step, steps)
        ilo = step
        iup = step + n_steps + 1
        x_test, y_test = prepare_data(y_iter[ilo:iup], n_steps=n_steps)
        y_pred = model.predict(x_test, verbose=0)
        y_iter[iup] = y_pred
    return y_iter[n_steps:]


def plot_single(y_test, y_plots, n_steps, nrows=2):
    # prepare variables for plotting
    metric = 'mse'
    mima = [min(y_test), max(y_test)]
    titles = ['all', 'iterative']
    lin = np.arange(-n_steps, len(y_test))
    # create figure
    fig, axis = plt.subplots(figsize=(16, 9),
                             nrows=2, ncols=3)
    # plot time series
    axia = axis[1, 0]
    axia.set_title('original data')
    tab.plot(ax=axia)
    axia.set_xlabel('time')
    axia.set_ylabel('value')
    # plot network training history
    axia = axis[0, 0]
    axia.set_title('training history')
    axia.plot(history.history[metric], label='train')
    axia.plot(history.history['val_'+metric], label='test')
    axia.set_xlabel('epoch')
    axia.set_ylabel(metric)
    axia.set_yscale('log')
    plt.legend()
    # plot result for "all" and "iterative" prediction
    for idy, y_plot in enumerate(y_plots):
        # plot true/predicted time series
        axia = axis[idy, 1]
        axia.set_title(titles[idy])
        axia.plot(lin, veo, label='full')
        axia.plot(y_test, label='true')
        axia.plot(y_plot, label='predicted')
        plt.legend()
        axia.set_xlabel('time')
        axia.set_ylabel('value')
        axia.set_ylim(0, 1)
        # plot scatter plot of true/predicted data
        axia = axis[idy, 2]
        r2 = sklearn.metrics.r2_score(y_test, y_plot)
        axia.set_title('R2 = %.2f' % r2)
        axia.scatter(y_test, y_plot)
        axia.plot(mima, mima, color='black')
        axia.set_xlabel('true')
        axia.set_ylabel('predicted')
    plt.tight_layout()
    return None


def plot_multi(history, tab, y_pred, n_steps):
    # prepare variables for plotting
    metric = 'mse'
    # create figure
    fig, axis = plt.subplots(figsize=(16, 9),
                             nrows=1, ncols=2, squeeze=False)
    # plot network training history
    axia = axis[0, 0]
    axia.set_title('training history')
    axia.plot(history.history[metric], label='train')
    axia.plot(history.history['val_'+metric], label='test')
    axia.set_xlabel('epoch')
    axia.set_ylabel(metric)
    axia.set_yscale('log')
    plt.legend()
    # plot true/predicted time series
    axia = axis[0, 1]
    axia.plot(tab[0].values, label='true')
    axia.plot(range(n_steps, len(tab)), y_pred, label='predicted')
    plt.legend()
    axia.set_xlabel('time')
    axia.set_ylabel('value')
    axia.set_ylim(0, 1)
    plt.tight_layout()
    return None

关于python keras - 预测时间序列,基于相似序列的历史样本很少,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61484189/

相关文章:

python - Keys.BACK_SPACE 或 Keys.TAB 发送 key 不适用于 facebook selenium python

scala - 填补时间序列 Spark 中的空白

python - 在 Keras 中向嵌入层添加偏差

python - 绘制不同频率的时间数据(matplotlib、pandas)

r - 随着时间的推移在 R 中跟踪队列

python - 找到密集向量的最大值,将其设置为 1,其余设置为 0 [pyspark]

python - 如何部署python脚本?

python - 如何在 heroku chromedriver buildpack 中设置 chromedriver 的路径

python - 如何使用 Keras TimeseriesGenerator

keras - 在 PyTorch 中准备序列到序列网络的解码器