c++ - 使用 DFT 的一维热方程产生不正确的结果 (FFTW)

标签 c++ fftw dft

我正在尝试使用复杂到复杂的 IDFT 来求解一维热方程。问题是单个时间步长后的输出似乎不正确。我在下面包含了一个简单的例子来说明这个问题。
我初始化温度状态如下:
Initial state of the temperature domain
频域中的初始模式为:k[ 0] = 12.5 + 0ik[ 1] = 12.5 + 0ik[ 2] = 12.5 + 0ik[ 3] = 12.5 + 0ik[ 4] = 12.5 + 0ik[-3] = 12.5 + 0ik[-2] = 12.5 + 0ik[-1] = 12.5 + 0i然后我将频域的状态推进到 t=0.02使用标准的一维热方程:

double alpha = 0.2; // Thermal conductivity constant
double timestep = 0.02;

for (int i = 0; i < N; i++) {
    int k = (i <= N / 2) ? i : i - N;

    F[i][REAL] *= exp(-alpha * k * k * timestep); // Decay the real part
    F[i][IMAG] *= exp(-alpha * k * k * timestep); // Decay the imaginary part
}
t=0.02 处的频率模式变得:k[ 0] = 12.5 + 0ik[ 1] = 12.45 + 0ik[ 2] = 12.3 + 0ik[ 3] = 12.06 + 0ik[ 4] = 11.73 + 0ik[-3] = 12.06 + 0ik[-2] = 12.3 + 0ik[-1] = 12.45 + 0i执行IDFT获得t=0.02处的温域状态后我得到:
State of the spatial domain at t=0.02
空间域和频域似乎都是正确的周期性。然而,热量(空间域中的值)似乎不会根据高斯曲线消散。更令人惊讶的是,一些温度低于它们的初始值(它们变成负值!)。
能量守恒似乎是正确的:将所有温度加在一起仍然是 100。
这是我的完整热方程代码:
double alpha = 0.2;     // Thermal conductivity constant
double timestep = 0.02; // Physical heat equation timestep
int N = 8;              // Number of data points

fftw_complex* T = (fftw_complex*)fftw_alloc_complex(N); // Temperature domain
fftw_complex* F = (fftw_complex*)fftw_alloc_complex(N); // Frequency domain

fftw_plan plan = fftw_plan_dft_1d(N, F, T, FFTW_BACKWARD, FFTW_MEASURE); // IDFT from frequency to temperature domain

// Initialize all frequency modes such that there is a peak of 100 at x=0 in the temperature domain
// All other other points in the temperature domain are 0
for (int i = 0; i < N; i++) {
    F[i][REAL] = 100.0 / N;
    F[i][IMAG] = 0.0;
}

// Perform the IDFT to obtain the initial state in the temperature domain
fftw_execute(plan);
printTime1d(T, N);
printFrequencies1d(F, N);

// Perform a single timestep of the heat equation to obtain the frequency domain state at t=0.02
for (int i = 0; i < N; i++) {
    int k = (i <= N / 2) ? i : i - N;

    F[i][REAL] *= exp(-alpha * k * k * timestep); // Decay the real part
    F[i][IMAG] *= exp(-alpha * k * k * timestep); // Decay the imaginary part
}

// Perform the IDFT to obtain the temperature domain state at t=0.02
fftw_execute(plan);
printTime1d(T, N);
printFrequencies1d(F, N);
printTime(...)的定义和 printFrequencies(...)是:
void printTime1d(fftw_complex* data, int N) {
    int rounding_factor = pow(10, 2);

    for (int i = 0; i < N; i++) {
        std::cout << std::setw(8) << round(data[i][REAL] * rounding_factor) / rounding_factor;
    }

    std::cout << std::endl;
}

void printFrequencies1d(fftw_complex* data, int N) {
    int rounding_factor = pow(10, 2);

    for (int i = 0; i < N; i++) {
        int k = (i <= N / 2) ? i : i - N;

        double R = round(data[i][REAL] * rounding_factor) / rounding_factor;
        double I = round(data[i][IMAG] * rounding_factor) / rounding_factor;

        std::cout << "k[" << std::setw(2) << k << "]: " << std::setw(2) << R << ((I < 0) ? " - " : " + ") << std::setw(1) << abs(I) << "i" << std::endl;
    }

    std::cout << std::endl;
}
也许值得一提的是,我还使用复杂到真实的 IDFT(使用 fftw 的 fftw_plan_dft_c2r_1d())进行了这个实验,它给出了完全相同的结果。

最佳答案

您的问题是您没有解决所需的频率,而是在乘以衰减系数后得到函数的以下傅立叶图像:
original data before IDFT
上面的结果与你应该得到的结果相差太远了——一个高斯——至少是这样的(使用 80 个点而不是 8 个):
80-point data before IDFT
请注意上面第一个图表中的振幅是如何甚至没有机会接近零,而是撞到奈奎斯特频率。很明显,您会得到类似于吉布斯现象的伪像:这是傅立叶部分和的常见行为。
80 点数据版本的傅里叶逆变换则如下:
80-point spatial-domain function
这个结果仍然有负分量(因为我们使用了有限数量的谐波),但它们的幅度比你只用 8 个谐波得到的要小得多。
请注意,这确实意味着,如果您增加感兴趣的时间值,则可以减少考虑的谐波数量。起初这可能是出乎意料的,但这仅仅是因为高次谐波比低次谐波衰减得快得多,而且它们永远不会增加。

关于c++ - 使用 DFT 的一维热方程产生不正确的结果 (FFTW),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64155448/

相关文章:

c++ - Directx 9 地形碰撞

c - 在 C 中使用 FFTW 求解泊松方程时失去径向对称性

c++ - FFTW - 计算真正的 2D FFT,特殊要求

python - 傅里叶变换与 Numpy FFT

matlab - 格林函数的傅里叶变换 - 两个信号之间的差异几乎相同

c++ - 此错误发生在 : Exception thrown at 0x0F2BFB7C (ucrtbased. dll) 是试图更改大小的问题吗?

c++ - msvcrt.dll 是否为其 rand() 函数使用线性同余生成器?

c++ - 对三角形缠绕和变换感到困惑

arrays - 使用 C 指针时,Fortran 数组中的更改会导致另一个数组的更改

c++ - 舍入错误在 DFT 中给出不正确的结果?