java - 提高性能一致性的方法

标签 java performance memory concurrency jvm

在以下示例中,一个线程通过消费者正在接收的 ByteBuffer 发送“消息”。最佳性能非常好,但并不一致。

public class Main {
    public static void main(String... args) throws IOException {
        for (int i = 0; i < 10; i++)
            doTest();
    }

    public static void doTest() {
        final ByteBuffer writeBuffer = ByteBuffer.allocateDirect(64 * 1024);
        final ByteBuffer readBuffer = writeBuffer.slice();
        final AtomicInteger readCount = new PaddedAtomicInteger();
        final AtomicInteger writeCount = new PaddedAtomicInteger();

        for(int i=0;i<3;i++)
            performTiming(writeBuffer, readBuffer, readCount, writeCount);
        System.out.println();
    }

    private static void performTiming(ByteBuffer writeBuffer, final ByteBuffer readBuffer, final AtomicInteger readCount, final AtomicInteger writeCount) {
        writeBuffer.clear();
        readBuffer.clear();
        readCount.set(0);
        writeCount.set(0);

        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                byte[] bytes = new byte[128];
                while (!Thread.interrupted()) {
                    int rc = readCount.get(), toRead;
                    while ((toRead = writeCount.get() - rc) <= 0) ;
                    for (int i = 0; i < toRead; i++) {
                        byte len = readBuffer.get();
                        if (len == -1) {
                            // rewind.
                            readBuffer.clear();
//                            rc++;
                        } else {
                            int num = readBuffer.getInt();
                            if (num != rc)
                                throw new AssertionError("Expected " + rc + " but got " + num) ;
                            rc++;
                            readBuffer.get(bytes, 0, len - 4);
                        }
                    }
                    readCount.lazySet(rc);
                }
            }
        });
        t.setDaemon(true);
        t.start();
        Thread.yield();
        long start = System.nanoTime();
        int runs = 30 * 1000 * 1000;
        int len = 32;
        byte[] bytes = new byte[len - 4];
        int wc = writeCount.get();
        for (int i = 0; i < runs; i++) {
            if (writeBuffer.remaining() < len + 1) {
                // reader has to catch up.
                while (wc - readCount.get() > 0) ;
                // rewind.
                writeBuffer.put((byte) -1);
                writeBuffer.clear();
            }
            writeBuffer.put((byte) len);
            writeBuffer.putInt(i);
            writeBuffer.put(bytes);
            writeCount.lazySet(++wc);
        }
        // reader has to catch up.
        while (wc - readCount.get() > 0) ;
        t.interrupt();
        t.stop();
        long time = System.nanoTime() - start;
        System.out.printf("Message rate was %.1f M/s offsets %d %d %d%n", runs * 1e3 / time
                , addressOf(readBuffer) - addressOf(writeBuffer)
                , addressOf(readCount) - addressOf(writeBuffer)
                , addressOf(writeCount) - addressOf(writeBuffer)
        );
    }

    // assumes -XX:+UseCompressedOops.
    public static long addressOf(Object... o) {
        long offset = UNSAFE.arrayBaseOffset(o.getClass());
        return UNSAFE.getInt(o, offset) * 8L;
    }

    public static final Unsafe UNSAFE = getUnsafe();
    public static Unsafe getUnsafe() {
        try {
            Field field = Unsafe.class.getDeclaredField("theUnsafe");
            field.setAccessible(true);
            return (Unsafe) field.get(null);
        } catch (Exception e) {
            throw new AssertionError(e);
        }
    }

    private static class PaddedAtomicInteger extends AtomicInteger {
        public long p2, p3, p4, p5, p6, p7;

        public long sum() {
//            return 0;
            return p2 + p3 + p4 + p5 + p6 + p7;
        }
    }
}

打印同一数据 block 的时间。末尾的数字是对象的相对地址,表明它们在缓存中的布局每次都相同。运行 10 次较长时间的测试表明,给定的组合重复产生相同的性能。

Message rate was 63.2 M/s offsets 136 200 264
Message rate was 80.4 M/s offsets 136 200 264
Message rate was 80.0 M/s offsets 136 200 264

Message rate was 81.9 M/s offsets 136 200 264
Message rate was 82.2 M/s offsets 136 200 264
Message rate was 82.5 M/s offsets 136 200 264

Message rate was 79.1 M/s offsets 136 200 264
Message rate was 82.4 M/s offsets 136 200 264
Message rate was 82.4 M/s offsets 136 200 264

Message rate was 34.7 M/s offsets 136 200 264
Message rate was 39.1 M/s offsets 136 200 264
Message rate was 39.0 M/s offsets 136 200 264

每组缓冲区和计数器都进行了 3 次测试,这些缓冲区似乎给出了相似的结果。所以我相信这些缓冲区在内存中的布局方式我没有看到。

有什么东西可以更频繁地提供更高的性能吗?它看起来像缓存冲突,但我看不出这可能发生在哪里。

顺便说一句:M/s 是每秒数百万条消息,比任何人都可能需要的多,但最好了解如何使其始终保持快速。


编辑:使用同步等待和通知使结果更加一致。但不会更快。

Message rate was 6.9 M/s
Message rate was 7.8 M/s
Message rate was 7.9 M/s
Message rate was 6.7 M/s
Message rate was 7.5 M/s
Message rate was 7.7 M/s
Message rate was 7.3 M/s
Message rate was 7.9 M/s
Message rate was 6.4 M/s
Message rate was 7.8 M/s

编辑:通过使用任务集,如果我锁定两个线程以更改同一个内核,我可以使性能保持一致。

Message rate was 35.1 M/s offsets 136 200 216
Message rate was 34.0 M/s offsets 136 200 216
Message rate was 35.4 M/s offsets 136 200 216

Message rate was 35.6 M/s offsets 136 200 216
Message rate was 37.0 M/s offsets 136 200 216
Message rate was 37.2 M/s offsets 136 200 216

Message rate was 37.1 M/s offsets 136 200 216
Message rate was 35.0 M/s offsets 136 200 216
Message rate was 37.1 M/s offsets 136 200 216

If I use any two logical threads on different cores, I get the inconsistent behaviour

Message rate was 60.2 M/s offsets 136 200 216
Message rate was 68.7 M/s offsets 136 200 216
Message rate was 55.3 M/s offsets 136 200 216

Message rate was 39.2 M/s offsets 136 200 216
Message rate was 39.1 M/s offsets 136 200 216
Message rate was 37.5 M/s offsets 136 200 216

Message rate was 75.3 M/s offsets 136 200 216
Message rate was 73.8 M/s offsets 136 200 216
Message rate was 66.8 M/s offsets 136 200 216

编辑:触发 GC 似乎会改变行为。这些显示了在中途手动触发 GC 对相同缓冲区+计数器的重复测试。

faster after GC

Message rate was 27.4 M/s offsets 136 200 216
Message rate was 27.8 M/s offsets 136 200 216
Message rate was 29.6 M/s offsets 136 200 216
Message rate was 27.7 M/s offsets 136 200 216
Message rate was 29.6 M/s offsets 136 200 216
[GC 14312K->1518K(244544K), 0.0003050 secs]
[Full GC 1518K->1328K(244544K), 0.0068270 secs]
Message rate was 34.7 M/s offsets 64 128 144
Message rate was 54.5 M/s offsets 64 128 144
Message rate was 54.1 M/s offsets 64 128 144
Message rate was 51.9 M/s offsets 64 128 144
Message rate was 57.2 M/s offsets 64 128 144

and slower

Message rate was 61.1 M/s offsets 136 200 216
Message rate was 61.8 M/s offsets 136 200 216
Message rate was 60.5 M/s offsets 136 200 216
Message rate was 61.1 M/s offsets 136 200 216
[GC 35740K->1440K(244544K), 0.0018170 secs]
[Full GC 1440K->1302K(244544K), 0.0071290 secs]
Message rate was 53.9 M/s offsets 64 128 144
Message rate was 54.3 M/s offsets 64 128 144
Message rate was 50.8 M/s offsets 64 128 144
Message rate was 56.6 M/s offsets 64 128 144
Message rate was 56.0 M/s offsets 64 128 144
Message rate was 53.6 M/s offsets 64 128 144

编辑:使用@BegemoT 的库打印使用的核心 ID,我在 3.8 GHz i7(家用 PC)上得到以下信息

注意:偏移量是错误的 8 倍。由于堆大小很小,JVM 不会像处理更大的堆(但小于 32 GB)那样将引用乘以 8。

writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 54.4 M/s offsets 3392 3904 4416
writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#6]
Message rate was 54.2 M/s offsets 3392 3904 4416
writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 60.7 M/s offsets 3392 3904 4416

writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 25.5 M/s offsets 1088 1600 2112
writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 25.9 M/s offsets 1088 1600 2112
writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 26.0 M/s offsets 1088 1600 2112

writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 61.0 M/s offsets 1088 1600 2112
writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 61.8 M/s offsets 1088 1600 2112
writer.currentCore() -> Core[#0]
reader.currentCore() -> Core[#5]
Message rate was 60.7 M/s offsets 1088 1600 2112

您可以看到正在使用相同的逻辑线程,但性能在运行之间有所不同,但在运行中却没有(在运行中使用相同的对象)


我发现了问题。这是一个内存布局问题,但我可以看到一种简单的方法来解决它。 ByteBuffer 无法扩展,因此您无法添加填充,因此我创建了一个我丢弃的对象。

    final ByteBuffer writeBuffer = ByteBuffer.allocateDirect(64 * 1024);
    final ByteBuffer readBuffer = writeBuffer.slice();
    new PaddedAtomicInteger();
    final AtomicInteger readCount = new PaddedAtomicInteger();
    final AtomicInteger writeCount = new PaddedAtomicInteger();

没有这个额外的填充(未使用的对象),结果在 3.8 GHz i7 上看起来像这样。

Message rate was 38.5 M/s offsets 3392 3904 4416
Message rate was 54.7 M/s offsets 3392 3904 4416
Message rate was 59.4 M/s offsets 3392 3904 4416

Message rate was 54.3 M/s offsets 1088 1600 2112
Message rate was 56.3 M/s offsets 1088 1600 2112
Message rate was 56.6 M/s offsets 1088 1600 2112

Message rate was 28.0 M/s offsets 1088 1600 2112
Message rate was 28.1 M/s offsets 1088 1600 2112
Message rate was 28.0 M/s offsets 1088 1600 2112

Message rate was 17.4 M/s offsets 1088 1600 2112
Message rate was 17.4 M/s offsets 1088 1600 2112
Message rate was 17.4 M/s offsets 1088 1600 2112

Message rate was 54.5 M/s offsets 1088 1600 2112
Message rate was 54.2 M/s offsets 1088 1600 2112
Message rate was 55.1 M/s offsets 1088 1600 2112

Message rate was 25.5 M/s offsets 1088 1600 2112
Message rate was 25.6 M/s offsets 1088 1600 2112
Message rate was 25.6 M/s offsets 1088 1600 2112

Message rate was 56.6 M/s offsets 1088 1600 2112
Message rate was 54.7 M/s offsets 1088 1600 2112
Message rate was 54.4 M/s offsets 1088 1600 2112

Message rate was 57.0 M/s offsets 1088 1600 2112
Message rate was 55.9 M/s offsets 1088 1600 2112
Message rate was 56.3 M/s offsets 1088 1600 2112

Message rate was 51.4 M/s offsets 1088 1600 2112
Message rate was 56.6 M/s offsets 1088 1600 2112
Message rate was 56.1 M/s offsets 1088 1600 2112

Message rate was 46.4 M/s offsets 1088 1600 2112
Message rate was 46.4 M/s offsets 1088 1600 2112
Message rate was 47.4 M/s offsets 1088 1600 2112

与丢弃的填充对象。

Message rate was 54.3 M/s offsets 3392 4416 4928
Message rate was 53.1 M/s offsets 3392 4416 4928
Message rate was 59.2 M/s offsets 3392 4416 4928

Message rate was 58.8 M/s offsets 1088 2112 2624
Message rate was 58.9 M/s offsets 1088 2112 2624
Message rate was 59.3 M/s offsets 1088 2112 2624

Message rate was 59.4 M/s offsets 1088 2112 2624
Message rate was 59.0 M/s offsets 1088 2112 2624
Message rate was 59.8 M/s offsets 1088 2112 2624

Message rate was 59.8 M/s offsets 1088 2112 2624
Message rate was 59.8 M/s offsets 1088 2112 2624
Message rate was 59.2 M/s offsets 1088 2112 2624

Message rate was 60.5 M/s offsets 1088 2112 2624
Message rate was 60.5 M/s offsets 1088 2112 2624
Message rate was 60.5 M/s offsets 1088 2112 2624

Message rate was 60.5 M/s offsets 1088 2112 2624
Message rate was 60.9 M/s offsets 1088 2112 2624
Message rate was 60.6 M/s offsets 1088 2112 2624

Message rate was 59.6 M/s offsets 1088 2112 2624
Message rate was 60.3 M/s offsets 1088 2112 2624
Message rate was 60.5 M/s offsets 1088 2112 2624

Message rate was 60.9 M/s offsets 1088 2112 2624
Message rate was 60.5 M/s offsets 1088 2112 2624
Message rate was 60.5 M/s offsets 1088 2112 2624

Message rate was 60.7 M/s offsets 1088 2112 2624
Message rate was 61.6 M/s offsets 1088 2112 2624
Message rate was 60.8 M/s offsets 1088 2112 2624

Message rate was 60.3 M/s offsets 1088 2112 2624
Message rate was 60.7 M/s offsets 1088 2112 2624
Message rate was 58.3 M/s offsets 1088 2112 2624

不幸的是,在 GC 之后,始终存在对象无法以最佳方式布局的风险。解决此问题的唯一方法可能是向原始类添加填充。 :(

最佳答案

我不是处理器缓存领域的专家,但我怀疑您的问题本质上是缓存问题或其他一些内存布局问题。重复分配缓冲区和计数器而不清理旧对象可能会导致您定期获得非常糟糕的缓存布局,这可能会导致您的性能不一致。

使用您的代码并制作一些模组,我已经能够使性能保持一致(我的测试机器是 Intel Core2 Quad CPU Q6600 2.4GHz w/Win7x64 - 所以不太一样,但希望足够接近以获得相关结果) .我以两种不同的方式完成了此操作,两者的效果大致相同。

首先,将缓冲区和计数器的创建移到 doTest 方法之外,以便它们只创建一次,然后在每次通过测试时重复使用。现在你得到了一个分配,它很好地位于缓存中并且性能是一致的。

获得相同重用但使用“不同”缓冲区/计数器的另一种方法是在 performTiming 循环之后插入 gc:

for ( int i = 0; i < 3; i++ )
    performTiming ( writeBuffer, readBuffer, readCount, writeCount );
System.out.println ();
System.gc ();

这里的结果或多或少是相同的 - gc 让缓冲区/计数器被回收,下一次分配最终重用相同的内存(至少在我的测试系统上)并且您最终在缓存中具有一致的性能(我还添加了实际地址的打印以验证相同位置的重复使用)。我的猜测是,如果没有导致重用的清理,您最终会分配一个不适合缓存的缓冲区,并且您的性能会因为它被交换而受到影响。我怀疑您可以按照分配顺序做一些奇怪的事情(就像您可以通过将计数器分配移动到缓冲区前面来使我的机器上的性能变差)或在每次运行时创建一些死区以“清除”缓存,如果您不想从先前的循环中消除缓冲区.

最后,正如我所说,处理器缓存和内存布局的乐趣不是我的专业领域,所以如果解释具有误导性或错误 - 很抱歉。

关于java - 提高性能一致性的方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/7969665/

相关文章:

algorithm - 我怎样才能加快这个字谜算法

c++ - std::vector 成员变量可以未初始化(内存错误)吗?

java - 了解 Java 中的调用目标异常包装

python - 优化使用 python (Django) 填充数据库的代码

java - 如何从文档中检索嵌套对象并将其显示在 FirestoreRecyclerOptions 中?

windows - 我可以获得 Windows Azure 诊断性能计数器名称的完整列表吗?

memory - FreeRTOS 应用程序的长 gdb 回溯是堆栈溢出的标志吗?

c++ - 有人可以解释为什么 int 会根据系统架构呈现不同的大小吗?

javascript - 无法打开与同一 SockJS 端点的多个连接

java - 如何在 Maven src/test 中为 XSD 生成类,在 src/main 中引用 XSD