java - Java 递归暴力迷宫求解器

标签 java recursion brute-force maze

在尝试编写一个强力解决迷宫的 C 程序时,我首先编写了这个 java 程序来测试一个想法。我对 C 很陌生,打算在 Java 中正确使用它后将其转换。因此,我尝试远离数组列表、花哨的库等,以便更容易转换为 C。该程序需要生成最短步骤的单宽度路径来解决迷宫。我认为我的问题可能在于对每个递归传递的路径存储数组进行碎片化。感谢您查看此内容。 -乔

maze:

1 3 3 3 3 
3 3 3 3 3 
3 0 0 0 3 
3 0 3 3 3 
0 3 3 3 2 


Same maze solved by this program:
4 4 4 4 4 
4 4 4 4 4 
4 0 0 0 4 
3 0 3 3 4 
0 3 3 3 2 

数字符号在代码中解释

    public class javamaze {

static storage[] best_path;
static int best_count;
static storage[] path;

//the maze - 1 = start; 2 = finish; 3 = open path
static int maze[][] = {{1, 3, 3, 3, 3}, 
    {3, 3, 3, 3, 3},
    {0, 0, 0, 0, 3},
    {0, 0, 3, 3, 3},
    {3, 3, 3, 3, 2}};

public static void main(String[] args) {

    int count1;
    int count2;

    //declares variables used in the solve method
    best_count = 0;
    storage[] path = new storage[10000];
    best_path = new storage[10000];
    int path_count = 0;


    System.out.println("Here is the maze:");
    for(count1 = 0; count1 < 5; count1++) {
        for(count2 = 0; count2 < 5; count2++) {
            System.out.print(maze[count1][count2] + " ");   
        }                       
        System.out.println("");         
    }                       

    //solves the maze
    solve(findStart()/5, findStart()%5, path, path_count);  

    //assigns an int 4 path to the maze to visually represent the shortest path
    for(int count = 0; count <= best_path.length - 1; count++)
        if (best_path[count] != null)
            maze[best_path[count].getx()][best_path[count].gety()] = 4;

    System.out.print("Here is the solved maze\n");

    //prints the solved maze
    for(count1 = 0; count1 < 5; count1++) {
        for(count2 = 0; count2 < 5; count2++){
            System.out.print(maze[count1][count2] + " ");
        }
        System.out.print("\n");
    }
}

//finds maze start marked by int 1 - this works perfectly and isn't related to the problem
public static int findStart() {
    int count1, count2;
    for(count1 = 0; count1 < 5; count1++) {
        for(count2 = 0; count2 < 5; count2++) {
            if (maze[count1][count2] == 1)
                return (count1 * 5 + count2);
        }
    }
    return -1;
}

//saves path coordinate values into a new array
public static void save_storage(storage[] old_storage) {
    int count;
    for(count = 0; count < old_storage.length; count++) {
        best_path[count] = old_storage[count];
    }
}

//solves the maze
public static Boolean solve(int x, int y, storage[] path, int path_count) {

    //checks to see if grid squares are valid (3 = open path; 0 = wall
    if (x < 0 || x > 4) { //array grid is a 5 by 5
        //System.out.println("found row end returning false");
        return false;
    }
    if (y < 0 || y > 4) {
        //System.out.println("Found col end returning false");
        return false;
    }

    //when finding finish - records the number of moves in static int best_count
    if (maze[x][y] == 2) {
        if (best_count == 0 || best_count > path_count) {
            System.out.println("Found end with this many moves: " + path_count);
            best_count = path_count;
            save_storage(path); //copies path counting array into a new static array
        }
    }
    //returns false if it hits a wall
    if (maze[x][y] == 0)
        return false;

    //checks with previously crossed paths to prevent an unnecessary repeat in steps
    for(storage i: path) 
        if (i != null)
            if (i.getx() == x && i.gety() == y) 
                return false;

    //saves current recursive x, y (row, col) coordinates into a storage object which is then added to an array.
    //this array is supposed to fragment per each recursion which doesn't seem to - this may be the issue
    storage storespoints = new storage(x, y);
    path[path_count] = storespoints;

    //recurses up, down, right, left
    if (solve((x-1), y, path, path_count++) == true || solve((x+1), y, path, path_count++) == true ||
            solve(x, (y+1), path, path_count++) == true || solve(x, (y-1), path, path_count++) == true) {
        return true;
    }

    return false;
}
} 

//stores (x, y) aka row, col coordinate points
class storage {

private int x;
private int y;

public storage(int x, int y) {
    this.x = x;
    this.y = y;
}
public int getx() {
    return x;
}
public int gety() {
    return y;
}
public String toString() {
    return ("storage coordinate: " + x + ", " + y + "-------");
}

}

最佳答案

这最初并不是为了成为一个答案,但它后来演变成了一个答案。老实说,我认为从 Java 开始并转向 C 是一个坏主意,因为这两种语言实际上没有什么相似之处,而且您不会给自己带来任何好处,因为如果您依赖 java 的任何功能,移植它时您将遇到严重的问题C 没有(即大多数)

也就是说,我将勾勒出一些算法 C 的东西。

支撑结构

typedef
struct Node
{
    int x, y;
    // x and y are array indices
}
Node;

typedef
struct Path
{
    int maxlen, head;
    Node * path;
    // maxlen is size of path, head is the index of the current node
    // path is the pointer to the node array
}
Path;

int    node_compare(Node * n1, Node * n2); // returns true if nodes are equal, else false

void   path_setup(Path * p, Node * n); // allocates Path.path and sets first node
void   path_embiggen(Path * p);        // use realloc to make path bigger in case it fills up
int    path_toosmall(Path * p);        // returns true if the path needs to be reallocated to add more nodes
Node * path_head(Path * p);            // returns the head node of the path
void   path_push(Path * p, Node * n);  // pushes a new head node onto the path
void   path_pop(Path * p);             // pops a node from path

您可能会将迷宫格式更改为邻接列表之类的东西。您可以将每个节点存储为掩码,详细说明您可以从该节点前往哪些节点。

迷宫格式

const int // these constants indicate which directions of travel are possible from a node
N = (1 << 0),       // travel NORTH from node is possible
S = (1 << 1),       // travel SOUTH from node is possible
E = (1 << 2),       // travel EAST  from node is possible
W = (1 << 3),       // travel WEST  from node is possible
NUM_DIRECTIONS = 4; // number of directions (might not be 4.  no reason it has to be)

const int
START  = (1 << 4),  // starting  node
FINISH = (1 << 5);  // finishing node

const int
MAZE_X = 4,         // maze dimensions
MAZE_Y = 4;

int maze[MAZE_X][MAZE_Y] = 
{
    {E,        S|E|W,    S|E|W,    S|W       },
    {S|FINISH, N|S,      N|START,  N|S       },
    {N|S,      N|E,      S|E|W,    N|S|W     },
    {N|E,      E|W,      N|W,      N         }
};

Node start  = {1, 2}; // position of start node
Node finish = {1, 0}; // position of end node

我的迷宫与你的不同:两种格式并不完全一一对应。例如,您的格式允许更精细的移动,但我的格式允许单向路径。

请注意,您的格式明确定位了墙壁。按照我的格式,墙在概念上位于不可能有路径的任何地方。我创建的迷宫有 3 个水平墙和 5 个垂直墙(并且也是封闭的,即整个迷宫周围有一个连续的墙)

对于暴力遍历,我将使用深度优先搜索。您可以通过多种方式将标志映射到方向,例如以下方式。由于无论如何都要循环遍历每个容器,因此访问时间无关紧要,因此数组而不是某种更快的关联容器就足够了。

数据格式到偏移映射

// map directions to array offsets
// format is [flag], [x offset], [y offset]
int mappings[][] =
{
    {N, -1,  0},
    {S,  1,  0},
    {E,  0,  1},
    {W,  0, -1}
}

最后,你的搜索。您可以迭代或递归地实现它。我的示例使用递归。

搜索算法伪代码

int search_for_path(int ** maze, char ** visited, Path * path)
{
    Node * head = path_head(path);
    Node temp;
    int i;

    if (node_compare(head, &finish)) return 1; // found finish
    if (visited[head->x][head->y])   return 0; // don't traverse again, that's pointless

    visited[head->x][head->y] = 1;
    if (path_toosmall(path)) path_embiggen(path);

    for (i = 0; i < NUM_DIRECTIONS; ++i)
    {
        if (maze[head->x][head->y] & mappings[i][0]) // path in this direction
        {
            temp = {head->x + mappings[i][1], head->y + mappings[i][2]};
            path_push(path, &temp);
            if (search_for_path(maze, visited, path)) return 1; // something found end
            path_pop(path);
        }
    }
    return 0; // unable to find path from any unvisited neighbor
}

要调用此函数,您应该像这样设置所有内容:

调用求解器

// we already have the maze
// int maze[MAZE_X][MAZE_Y] = {...};

// make a visited list, set to all 0 (unvisited)
int visited[MAZE_X][MAZE_Y] = 
{
    {0,0,0,0},
    {0,0,0,0},
    {0,0,0,0},
    {0,0,0,0}
};

// setup the path
Path p;
path_setup(&p, &start);

if (search_for_path(maze, visited, &path))
{
    // succeeded, path contains the list of nodes containing coordinates from start to end
}
else
{
    // maze was impossible
}

值得注意的是,因为这些都是我在编辑框中写的,所以我没有测试任何内容。第一次尝试可能不会成功,并且可能需要一些调整。例如,除非全局声明开始和结束,否则将会出现一些问题。最好将目标节点传递给搜索函数,而不是使用全局变量。

关于java - Java 递归暴力迷宫求解器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11457704/

相关文章:

java - Tomcat 8.5 gzip 压缩不起作用

c++ - 函数内部的递归函数c++

java - 二叉搜索树递归不起作用

wordpress - 暴力攻击/用户枚举

Java-setter 中值的验证

java - 从请求中获取命名空间前缀并在 Spring Java 中查找带有它的元素

recursion - 如何在sml中递归地重复调用另一个函数?

string - 蛮力字符串匹配概念

python - 多线程我的简单 SSH 暴力破解器

Java 抽象类抛出异常