iphone - iPhone 上的音频合成从哪里开始

标签 iphone audio

我想为 iPhone 构建一个合成器。据我了解,可以为 iPhone 使用自定义音频单元。乍一看,这听起来很有希望,因为有大量的音频单元编程资源可用。然而,在 iPhone 上使用自定义音频单元似乎有点棘手(请参阅:http://lists.apple.com/archives/Coreaudio-api/2008/Nov/msg00262.html)

这似乎是很多人都必须做的事情,但是简单地在谷歌上搜索“iphone 音频合成”并不会出现任何类似于简单易用的教程或推荐工具包的内容。

那么,这里有人有在 iPhone 上合成声音的经验吗?自定义音频单元是可行的方法,还是我应该考虑另一种更简单的方法?

最佳答案

我也在调查这个。我认为 AudioQueue API 可能是正确的选择。

据我所知,似乎工作正常。

文件:BleepMachine.h

//
//  BleepMachine.h
//  WgHeroPrototype
//
//  Created by Andy Buchanan on 05/01/2010.
//  Copyright 2010 Andy Buchanan. All rights reserved.
//

#include <AudioToolbox/AudioToolbox.h>

// Class to implement sound playback using the AudioQueue API's
// Currently just supports playing two sine wave tones, one per
// stereo channel. The sound data is liitle-endian signed 16-bit @ 44.1KHz
//
class BleepMachine
{
    static void staticQueueCallback( void* userData, AudioQueueRef outAQ, AudioQueueBufferRef outBuffer )
    {
        BleepMachine* pThis = reinterpret_cast<BleepMachine*> ( userData );
        pThis->queueCallback( outAQ, outBuffer );
    }
    void queueCallback( AudioQueueRef outAQ, AudioQueueBufferRef outBuffer );

    AudioStreamBasicDescription m_outFormat;

    AudioQueueRef m_outAQ;

    enum 
    {
        kBufferSizeInFrames = 512,
        kNumBuffers = 4,
        kSampleRate = 44100,
    };

    AudioQueueBufferRef m_buffers[kNumBuffers];

    bool m_isInitialised;

    struct Wave 
    {
        Wave(): volume(1.f), phase(0.f), frequency(0.f), fStep(0.f) {}
        float   volume;
        float   phase;
        float   frequency;
        float   fStep;
    };

    enum 
    {
        kLeftWave = 0,
        kRightWave = 1,
        kNumWaves,
    };

    Wave m_waves[kNumWaves];

public:
    BleepMachine();
    ~BleepMachine();

    bool Initialise();
    void Shutdown();

    bool Start();
    bool Stop();

    bool SetWave( int id, float frequency, float volume );
};

// Notes by name. Integer value is number of semitones above A.
enum Note
{
    A       = 0,
    Asharp,
    B,
    C,
    Csharp,
    D,
    Dsharp,
    E,
    F,
    Fsharp,
    G,
    Gsharp,

    Bflat = Asharp,
    Dflat = Csharp,
    Eflat = Dsharp,
    Gflat = Fsharp,
    Aflat = Gsharp,
};

// Helper function calculates fundamental frequency for a given note
float CalculateFrequencyFromNote( SInt32 semiTones, SInt32 octave=4 );
float CalculateFrequencyFromMIDINote( SInt32 midiNoteNumber );

文件:BleepMachine.mm

 //
//  BleepMachine.mm
//  WgHeroPrototype
//
//  Created by Andy Buchanan on 05/01/2010.
//  Copyright 2010 Andy Buchanan. All rights reserved.
//

#include "BleepMachine.h"

void BleepMachine::queueCallback( AudioQueueRef outAQ, AudioQueueBufferRef outBuffer )
{
    // Render the wave

    // AudioQueueBufferRef is considered "opaque", but it's a reference to
    // an AudioQueueBuffer which is not. 
    // All the samples manipulate this, so I'm not quite sure what they mean by opaque
    // saying....
    SInt16* coreAudioBuffer = (SInt16*)outBuffer->mAudioData;

    // Specify how many bytes we're providing
    outBuffer->mAudioDataByteSize = kBufferSizeInFrames * m_outFormat.mBytesPerFrame;

    // Generate the sine waves to Signed 16-Bit Stero interleaved ( Little Endian )
    float volumeL = m_waves[kLeftWave].volume;
    float volumeR = m_waves[kRightWave].volume;
    float phaseL = m_waves[kLeftWave].phase;
    float phaseR = m_waves[kRightWave].phase;
    float fStepL = m_waves[kLeftWave].fStep;
    float fStepR = m_waves[kRightWave].fStep;

    for( int s=0; s<kBufferSizeInFrames*2; s+=2 )
    {
        float sampleL = ( volumeL * sinf( phaseL ) );
        float sampleR = ( volumeR * sinf( phaseR ) );

        short sampleIL = (int)(sampleL * 32767.0);
        short sampleIR = (int)(sampleR * 32767.0);

        coreAudioBuffer[s] =   sampleIL;
        coreAudioBuffer[s+1] = sampleIR;

        phaseL += fStepL;
        phaseR += fStepR;
    }

    m_waves[kLeftWave].phase = fmodf( phaseL, 2 * M_PI );   // Take modulus to preserve precision
    m_waves[kRightWave].phase = fmodf( phaseR, 2 * M_PI );

    // Enqueue the buffer
    AudioQueueEnqueueBuffer( m_outAQ, outBuffer, 0, NULL ); 
}

bool BleepMachine::SetWave( int id, float frequency, float volume )
{
    if ( ( id < kLeftWave ) || ( id >= kNumWaves ) ) return false;

    Wave& wave = m_waves[ id ];

    wave.volume = volume;
    wave.frequency = frequency;
    wave.fStep = 2 * M_PI * frequency / kSampleRate;

    return true;
}

bool BleepMachine::Initialise()
{
    m_outFormat.mSampleRate = kSampleRate;
    m_outFormat.mFormatID = kAudioFormatLinearPCM;
    m_outFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked;
    m_outFormat.mFramesPerPacket = 1;
    m_outFormat.mChannelsPerFrame = 2;
    m_outFormat.mBytesPerPacket = m_outFormat.mBytesPerFrame = sizeof(UInt16) * 2;
    m_outFormat.mBitsPerChannel = 16;
    m_outFormat.mReserved = 0;

    OSStatus result = AudioQueueNewOutput(
                                          &m_outFormat,
                                          BleepMachine::staticQueueCallback,
                                          this,
                                          NULL,
                                          NULL,
                                          0,
                                          &m_outAQ
                                          );

    if ( result < 0 )
    {
        printf( "ERROR: %d\n", (int)result );
        return false;
    }

    // Allocate buffers for the audio
    UInt32 bufferSizeBytes = kBufferSizeInFrames * m_outFormat.mBytesPerFrame;

    for ( int buf=0; buf<kNumBuffers; buf++ ) 
    {
        OSStatus result = AudioQueueAllocateBuffer( m_outAQ, bufferSizeBytes, &m_buffers[ buf ] );
        if ( result )
        {
            printf( "ERROR: %d\n", (int)result );
            return false;
        }

        // Prime the buffers
        queueCallback( m_outAQ, m_buffers[ buf ] );
    }

    m_isInitialised = true;
    return true;
}

void BleepMachine::Shutdown()
{
    Stop();

    if ( m_outAQ )
    {
        // AudioQueueDispose also chucks any audio buffers it has
        AudioQueueDispose( m_outAQ, true );
    }

    m_isInitialised = false;
}

BleepMachine::BleepMachine()
: m_isInitialised(false), m_outAQ(0)
{
    for ( int buf=0; buf<kNumBuffers; buf++ ) 
    {
        m_buffers[ buf ] = NULL;
    }
}

BleepMachine::~BleepMachine()
{
    Shutdown();
}

bool BleepMachine::Start()
{
    OSStatus result = AudioQueueSetParameter( m_outAQ, kAudioQueueParam_Volume, 1.0 );
    if ( result ) printf( "ERROR: %d\n", (int)result );

    // Start the queue
    result = AudioQueueStart( m_outAQ, NULL );
    if ( result ) printf( "ERROR: %d\n", (int)result );

    return true;
}

bool BleepMachine::Stop()
{
    OSStatus result = AudioQueueStop( m_outAQ, true );
    if ( result ) printf( "ERROR: %d\n", (int)result );

    return true;
}

// A    (A4=440)
// A#   f(n)=2^(n/12) * r
// B    where n = number of semitones
// C    and r is the root frequency e.g. 440
// C#
// D    frq -> MIDI note number
// D#   p = 69 + 12 x log2(f/440)
// E
// F    
// F#
// G
// G#
//
// MIDI Note ref: http://www.phys.unsw.edu.au/jw/notes.html
//
// MIDI Node numbers:
// A3   57
// A#3  58
// B3   59
// C4   60 <--
// C#4  61
// D4   62
// D#4  63
// E4   64
// F4   65
// F#4  66
// G4   67
// G#4  68
// A4   69 <--
// A#4  70
// B4   71
// C5   72

float CalculateFrequencyFromNote( SInt32 semiTones, SInt32 octave )
{
    semiTones += ( 12 * (octave-4) );
    float root = 440.f;
    float fn = powf( 2.f, (float)semiTones/12.f ) * root;
    return fn;
}

float CalculateFrequencyFromMIDINote( SInt32 midiNoteNumber )
{
    SInt32 semiTones = midiNoteNumber - 69;
    return CalculateFrequencyFromNote( semiTones, 4 );
}

//for ( SInt32 midiNote=21; midiNote<=108; ++midiNote )
//{
//  printf( "MIDI Note %d: %f Hz \n",(int)midiNote,CalculateFrequencyFromMIDINote( midiNote ) );
//}

更新:基本使用信息

  1. 初始化。在接近开始的地方,我在代码中使用 initFromNib:

    m_bleepMachine = new BleepMachine;
    m_bleepMachine->Initialise();
    m_bleepMachine->Start();
    
  2. 现在声音播放正在运行,但产生静音。

  3. 在您的代码中,当您想要更改音调生成时调用此函数

    m_bleepMachine->SetWave( ch, frq, vol );
    
    • 其中 ch 是 channel (0 或 1)
    • 其中 frq 是以 Hz 为单位设置的频率
    • 其中 vol 是卷(0=-Inf db,1=-0db)
  4. 程序终止时

    delete m_bleepMachine;
    

关于iphone - iPhone 上的音频合成从哪里开始,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/2067267/

相关文章:

iphone - 返回一个 stringfromdate 方法

iphone - 更新框架后 UITextView 不滚动

c# - 如何玩ISampleProvider

html - Kindle Fire HD使用HTML5音频标签同时播放Ogg和MP3

ios - 当给定 iOS 风景照片时 CGImage 不旋转

iphone - AppStore 版本中的 GameCenter 出现问题

javascript - HTML 音频 - 我如何检测流是否可用?

asp.net - 有关从 ASP.NET MVC 应用程序播放声音文件的建议

iphone - 按比例缩放整个 UIView

android - Android录音的动态采样率