c# - 大文件的 Windows fsync (FlushFileBuffers) 性能

标签 c# windows performance fsync

来自确保数据在磁盘上的信息 (http://winntfs.com/2012/11/29/windows-write-caching-part-2-an-overview-for-application-developers/),即使在例如停电时,在 Windows 平台上,您似乎需要依靠其“fsync”版本 FlushFileBuffers 来最好地保证缓冲区实际上从磁盘设备缓存刷新到存储介质本身。 FILE_FLAG_NO_BUFFERINGFILE_FLAG_WRITE_THROUGH 的组合不能确保刷新设备缓存,但仅对文件系统缓存产生影响(如果此信息正确的话)。

鉴于我将处理相当大的文件,需要“事务性”更新,这意味着在事务提交结束时执行“fsync”。所以我创建了一个小应用程序来测试这样做的性能。它基本上使用 8 次写入执行一批 8 个内存页面大小的随机字节的顺序写入,然后刷新。批处理在一个循环中重复,并且在每写入这么多页之后记录性能。此外,它还有两个可配置选项:刷新时进行 fsync 以及是否在开始页面写入之前将字节写入文件的最后位置。

// Code updated to reflect new results as discussed in answer below.
// 26/Aug/2013: Code updated again to reflect results as discussed in follow up question.
// 28/Aug/2012: Increased file stream buffer to ensure 8 page flushes.
class Program
{
    static void Main(string[] args)
    {
        BenchSequentialWrites(reuseExistingFile:false);
    }
    public static void BenchSequentialWrites(bool reuseExistingFile = false)
    {
        Tuple<string, bool, bool, bool, bool>[] scenarios = new Tuple<string, bool, bool, bool, bool>[]
        {   // output csv, fsync?, fill end?, write through?, mem map?
            Tuple.Create("timing FS-E-B-F.csv", true, false, false, false),
            Tuple.Create("timing NS-E-B-F.csv", false, false, false, false),
            Tuple.Create("timing FS-LB-B-F.csv", true, true, false, false),
            Tuple.Create("timing NS-LB-B-F.csv", false, true, false, false),
            Tuple.Create("timing FS-E-WT-F.csv", true, false, true, false),
            Tuple.Create("timing NS-E-WT-F.csv", false, false, true, false),
            Tuple.Create("timing FS-LB-WT-F.csv", true, true, true, false),
            Tuple.Create("timing NS-LB-WT-F.csv", false, true, true, false),
            Tuple.Create("timing FS-E-B-MM.csv", true, false, false, true),
            Tuple.Create("timing NS-E-B-MM.csv", false, false, false, true),
            Tuple.Create("timing FS-LB-B-MM.csv", true, true, false, true),
            Tuple.Create("timing NS-LB-B-MM.csv", false, true, false, true),
            Tuple.Create("timing FS-E-WT-MM.csv", true, false, true, true),
            Tuple.Create("timing NS-E-WT-MM.csv", false, false, true, true),
            Tuple.Create("timing FS-LB-WT-MM.csv", true, true, true, true),
            Tuple.Create("timing NS-LB-WT-MM.csv", false, true, true, true),
        };
        foreach (var scenario in scenarios)
        {
            Console.WriteLine("{0,-12} {1,-16} {2,-16} {3,-16} {4:F2}", "Total pages", "Interval pages", "Total time", "Interval time", "MB/s");
            CollectGarbage();
            var timingResults = SequentialWriteTest("test.data", !reuseExistingFile, fillEnd: scenario.Item3, nPages: 200 * 1000, fSync: scenario.Item2, writeThrough: scenario.Item4, writeToMemMap: scenario.Item5);
            using (var report = File.CreateText(scenario.Item1))
            {
                report.WriteLine("Total pages,Interval pages,Total bytes,Interval bytes,Total time,Interval time,MB/s");
                foreach (var entry in timingResults)
                {
                    Console.WriteLine("{0,-12} {1,-16} {2,-16} {3,-16} {4:F2}", entry.Item1, entry.Item2, entry.Item5, entry.Item6, entry.Item7);
                    report.WriteLine("{0},{1},{2},{3},{4},{5},{6}", entry.Item1, entry.Item2, entry.Item3, entry.Item4, entry.Item5.TotalSeconds, entry.Item6.TotalSeconds, entry.Item7);
                }
            }
        }
    }

    public unsafe static IEnumerable<Tuple<long, long, long, long, TimeSpan, TimeSpan, double>> SequentialWriteTest(
        string fileName,
        bool createNewFile,
        bool fillEnd,
        long nPages,
        bool fSync = true,
        bool writeThrough = false,
        bool writeToMemMap = false,
        long pageSize = 4096)
    {
        // create or open file and if requested fill in its last byte.
        var fileMode = createNewFile ? FileMode.Create : FileMode.OpenOrCreate;
        using (var tmpFile = new FileStream(fileName, fileMode, FileAccess.ReadWrite, FileShare.ReadWrite, (int)pageSize))
        {
            Console.WriteLine("Opening temp file with mode {0}{1}", fileMode, fillEnd ? " and writing last byte." : ".");
            tmpFile.SetLength(nPages * pageSize);
            if (fillEnd)
            {
                tmpFile.Position = tmpFile.Length - 1;
                tmpFile.WriteByte(1);
                tmpFile.Position = 0;
                tmpFile.Flush(true);
            }
        }
        // Make sure any flushing / activity has completed
        System.Threading.Thread.Sleep(TimeSpan.FromMinutes(1));
        System.Threading.Thread.SpinWait(50); // warm up.

        var buf = new byte[pageSize];
        new Random().NextBytes(buf);
        var ms = new System.IO.MemoryStream(buf);

        var stopwatch = new System.Diagnostics.Stopwatch();
        var timings = new List<Tuple<long, long, long, long, TimeSpan, TimeSpan, double>>();
        var pageTimingInterval = 8 * 2000;
        var prevPages = 0L;
        var prevElapsed = TimeSpan.FromMilliseconds(0);

        // Open file
        const FileOptions NoBuffering = ((FileOptions)0x20000000);
        var options = writeThrough ? (FileOptions.WriteThrough | NoBuffering) : FileOptions.None;
        using (var file = new FileStream(fileName, FileMode.Open, FileAccess.ReadWrite, FileShare.ReadWrite, (int)(16 *pageSize), options))
        {
            stopwatch.Start();
            if (writeToMemMap)
            {
                // write pages through memory map.
                using (var mmf = MemoryMappedFile.CreateFromFile(file, Guid.NewGuid().ToString(), file.Length, MemoryMappedFileAccess.ReadWrite, null, HandleInheritability.None, true))
                using (var accessor = mmf.CreateViewAccessor(0, file.Length, MemoryMappedFileAccess.ReadWrite))
                {
                    byte* base_ptr = null;
                    accessor.SafeMemoryMappedViewHandle.AcquirePointer(ref base_ptr);
                    var offset = 0L;
                    for (long i = 0; i < nPages / 8; i++)
                    {
                        using (var memStream = new UnmanagedMemoryStream(base_ptr + offset, 8 * pageSize, 8 * pageSize, FileAccess.ReadWrite))
                        {
                            for (int j = 0; j < 8; j++)
                            {
                                ms.CopyTo(memStream);
                                ms.Position = 0;
                            }
                        }
                        FlushViewOfFile((IntPtr)(base_ptr + offset), (int)(8 * pageSize));
                        offset += 8 * pageSize;
                        if (fSync)
                            FlushFileBuffers(file.SafeFileHandle);

                        if (((i + 1) * 8) % pageTimingInterval == 0)
                            timings.Add(Report(stopwatch.Elapsed, ref prevElapsed, (i + 1) * 8, ref prevPages, pageSize));
                    }
                    accessor.SafeMemoryMappedViewHandle.ReleasePointer();
                }
            }
            else
            {
                for (long i = 0; i < nPages / 8; i++)
                {
                    for (int j = 0; j < 8; j++)
                    {
                        ms.CopyTo(file);
                        ms.Position = 0;
                    }
                    file.Flush(fSync);
                    if (((i + 1) * 8) % pageTimingInterval == 0)
                        timings.Add(Report(stopwatch.Elapsed, ref prevElapsed, (i + 1) * 8, ref prevPages, pageSize));
                }
            }
        }
        timings.Add(Report(stopwatch.Elapsed, ref prevElapsed, nPages, ref prevPages, pageSize));
        return timings;
    }

    private static Tuple<long, long, long, long, TimeSpan, TimeSpan, double> Report(TimeSpan elapsed, ref TimeSpan prevElapsed, long curPages, ref long prevPages, long pageSize)
    {
        var intervalPages = curPages - prevPages;
        var intervalElapsed = elapsed - prevElapsed;
        var intervalPageSize = intervalPages * pageSize;
        var mbps = (intervalPageSize / (1024.0 * 1024.0)) / intervalElapsed.TotalSeconds;
        prevElapsed = elapsed;
        prevPages = curPages;
        return Tuple.Create(curPages, intervalPages, curPages * pageSize, intervalPageSize, elapsed, intervalElapsed, mbps);
    }

    private static void CollectGarbage()
    {
        GC.Collect();
        GC.WaitForPendingFinalizers();
        System.Threading.Thread.Sleep(200);
        GC.Collect();
        GC.WaitForPendingFinalizers();
        System.Threading.Thread.SpinWait(10);
    }

    [DllImport("kernel32.dll", SetLastError = true)]
    static extern bool FlushViewOfFile(
        IntPtr lpBaseAddress, int dwNumBytesToFlush);

    [DllImport("kernel32.dll", SetLastError = true, CharSet = CharSet.Auto)]
    static extern bool FlushFileBuffers(SafeFileHandle hFile);
}

我获得的性能结果(64 位 Win 7,慢速磁盘)不是很令人鼓舞。似乎“fsync”性能在很大程度上取决于被刷新的文件的大小,因此这决定了时间,而不是要刷新的“脏”数据量。下图显示了小型基准测试应用程序的 4 个不同设置选项的结果。

Benchmark timing for 4 the scenarios

如您所见,“fsync”的性能随着文件的增长呈指数下降(直到达到几 GB 时它才真正停止运行)。此外,磁盘本身似乎并没有做很多事情(即资源监视器显示它的事件时间只有百分之几左右,而且它的磁盘队列在大部分时间里几乎是空的)。

我显然预计“fsync”性能会比正常的缓冲刷新差很多,但我曾预计它或多或少是恒定的并且与文件大小无关。像这样,它似乎表明它不能与单个大文件结合使用。

是否有人有解释、不同的经验或不同的解决方案来确保数据在磁盘上并且具有或多或少恒定的、可预测的性能?

已更新 在下面的答案中查看新信息。

最佳答案

您的测试显示同步运行的速度呈指数下降,因为您每次都在重新创建文件。在这种情况下,它不再是纯粹的顺序写入——每次写入也会增加文件,这需要多次查找来更新文件系统中的文件元数据。如果您使用预先存在的完全分配的文件运行所有这些作业,您会看到更快的结果,因为这些元数据更新都不会干扰。

我在我的 Linux 机器上运行了类似的测试。每次重新创建文件时的结果:

mmap    direct  last    sync    time
0   0   0   0    0.882293s
0   0   0   1    27.050636s
0   0   1   0    0.832495s
0   0   1   1    26.966625s
0   1   0   0    5.775266s
0   1   0   1    22.063392s
0   1   1   0    5.265739s
0   1   1   1    24.203251s
1   0   0   0    1.031684s
1   0   0   1    28.244678s
1   0   1   0    1.031888s
1   0   1   1    29.540660s
1   1   0   0    1.032883s
1   1   0   1    29.408005s
1   1   1   0    1.035110s
1   1   1   1    28.948555s

使用预先存在的文件的结果(显然 last_byte 的情况在这里无关紧要。另外,第一个结果也必须创建文件):

mmap    direct  last    sync    time
0   0   0   0    1.199310s
0   0   0   1    7.858803s
0   0   1   0    0.184925s
0   0   1   1    8.320572s
0   1   0   0    4.047780s
0   1   0   1    4.066993s
0   1   1   0    4.042564s
0   1   1   1    4.307159s
1   0   0   0    3.596712s
1   0   0   1    8.284428s
1   0   1   0    0.242584s
1   0   1   1    8.070947s
1   1   0   0    0.240500s
1   1   0   1    8.213450s
1   1   1   0    0.240922s
1   1   1   1    8.265024s

(请注意,我只使用了 10,000 个 block 而不是 25,000 个 block ,所以这只写了 320MB,使用的是 ext2 文件系统。我手边没有更大的 ext2fs,我的更大的 fs 是 XFS,它拒绝允许 mmap+direct输入/输出。)

这是代码,如果你有兴趣的话:

#define _GNU_SOURCE 1

#include <malloc.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

#define USE_MMAP    8
#define USE_DIRECT  4
#define USE_LAST    2
#define USE_SYNC    1

#define PAGE    4096
#define CHUNK   (8*PAGE)
#define NCHUNKS 10000
#define STATI   1000

#define FSIZE   (NCHUNKS*CHUNK)

main()
{
    int i, j, fd, rc, stc;
    char *data = valloc(CHUNK);
    char *map, *dst;
    char sfname[8];
    struct timeval start, end, stats[NCHUNKS/STATI+1];
    FILE *sfile;

    printf("mmap\tdirect\tlast\tsync\ttime\n");
    for (i=0; i<16; i++) {
        int oflag = O_CREAT|O_RDWR|O_TRUNC;

        if (i & USE_DIRECT)
            oflag |= O_DIRECT;
        fd = open("dummy", oflag, 0666);
        ftruncate(fd, FSIZE);
        if (i & USE_LAST) {
            lseek(fd, 0, SEEK_END);
            write(fd, data, 1);
            lseek(fd, 0, SEEK_SET);
        }
        if (i & USE_MMAP) {
            map = mmap(NULL, FSIZE, PROT_WRITE, MAP_SHARED, fd, 0);
            if (map == (char *)-1L) {
                perror("mmap");
                exit(1);
            }
            dst = map;
        }
        sprintf(sfname, "%x.csv", i);
        sfile = fopen(sfname, "w");
        stc = 1;
        printf("%d\t%d\t%d\t%d\t",
            (i&USE_MMAP)!=0, (i&USE_DIRECT)!=0, (i&USE_LAST)!=0, i&USE_SYNC);
        fflush(stdout);
        gettimeofday(&start, NULL);
        stats[0] = start;
        for (j = 1; j<=NCHUNKS; j++) {
            if (i & USE_MMAP) {
                memcpy(dst, data, CHUNK);
                if (i & USE_SYNC)
                    msync(dst, CHUNK, MS_SYNC);
                dst += CHUNK;
            } else {
                write(fd, data, CHUNK);
                if (i & USE_SYNC)
                    fdatasync(fd);
            }
            if (!(j % STATI)) {
                gettimeofday(&end, NULL);
                stats[stc++] = end;
            }
        }
        end.tv_usec -= start.tv_usec;
        if (end.tv_usec < 0) {
            end.tv_sec--;
            end.tv_usec += 1000000;
        }
        end.tv_sec -= start.tv_sec;
        printf(" %d.%06ds\n", (int)end.tv_sec, (int)end.tv_usec);
        if (i & USE_MMAP)
            munmap(map, FSIZE);
        close(fd);
        for (j=NCHUNKS/STATI; j>0; j--) {
            stats[j].tv_usec -= stats[j-1].tv_usec;
            if (stats[j].tv_usec < 0) {
                stats[j].tv_sec--;
                stats[j].tv_usec+= 1000000;
            }
            stats[j].tv_sec -= stats[j-1].tv_sec;
        }
        for (j=1; j<=NCHUNKS/STATI; j++)
            fprintf(sfile, "%d\t%d.%06d\n", j*STATI*CHUNK,
                (int)stats[j].tv_sec, (int)stats[j].tv_usec);
        fclose(sfile);
    }
}

关于c# - 大文件的 Windows fsync (FlushFileBuffers) 性能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18276554/

相关文章:

c++ - IsWindows10OrGreater() 在 Windows 10 上失败

java - Choreographer : Skipped 53 frames! 应用程序可能在其主线程上做了太多工作

python - 使用 scipy.weave 从内联 C 调用 Python 函数

c# - 身份服务器 4 : How so you include additional claims and get the value in an API controller?

c# - 在 C# 中显示继承接口(interface)实现的最佳方式是什么?

.net - 写入远程 MSMQ

c++ - 如何使用标准 API 打开和读取具有 unicode 路径或文件名的文件的内容?

java - 如何避免同步和对象创建?

c# - 带字符串数组的列表 (List<string[]>)

c# - Xamarin.Forms.Platform.iOS.ViewCellRenderer.GetCell 异常 : Specified cast is not valid