c++ - 用 C 编译 C++ 代码

标签 c++ c linux

这是我所拥有的:

/*
 * Copyright 1995, Russell King.
 * Various bits and pieces copyrights include:
 *  Linus Torvalds (test_bit).
 * Big endian support: Copyright 2001, Nicolas Pitre
 *  reworked by rmk.
 *
 * bit 0 is the LSB of an "unsigned long" quantity.
 *
 * Please note that the code in this file should never be included
 * from user space.  Many of these are not implemented in assembler
 * since they would be too costly.  Also, they require privileged
 * instructions (which are not available from user mode) to ensure
 * that they are atomic.
 */

#ifndef __ASM_ARM_BITOPS_H
#define __ASM_ARM_BITOPS_H

#ifdef __KERNEL__

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <asm/system.h>

#define smp_mb__before_clear_bit()  mb()
#define smp_mb__after_clear_bit()   mb()

/*
 * These functions are the basis of our bit ops.
 *
 * First, the atomic bitops. These use native endian.
 */
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
{
    unsigned long flags;
    unsigned long mask = 1UL << (bit & 31);

    p += bit >> 5;

    raw_local_irq_save(flags);
    *p |= mask;
    raw_local_irq_restore(flags);
}

static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
{
    unsigned long flags;
    unsigned long mask = 1UL << (bit & 31);

    p += bit >> 5;

    raw_local_irq_save(flags);
    *p &= ~mask;
    raw_local_irq_restore(flags);
}

static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
{
    unsigned long flags;
    unsigned long mask = 1UL << (bit & 31);

    p += bit >> 5;

    raw_local_irq_save(flags);
    *p ^= mask;
    raw_local_irq_restore(flags);
}

static inline int
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
{
    unsigned long flags;
    unsigned int res;
    unsigned long mask = 1UL << (bit & 31);

    p += bit >> 5;

    raw_local_irq_save(flags);
    res = *p;
    *p = res | mask;
    raw_local_irq_restore(flags);

    return (res & mask) != 0;
}

static inline int
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
{
    unsigned long flags;
    unsigned int res;
    unsigned long mask = 1UL << (bit & 31);

    p += bit >> 5;

    raw_local_irq_save(flags);
    res = *p;
    *p = res & ~mask;
    raw_local_irq_restore(flags);

    return (res & mask) != 0;
}

static inline int
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
{
    unsigned long flags;
    unsigned int res;
    unsigned long mask = 1UL << (bit & 31);

    p += bit >> 5;

    raw_local_irq_save(flags);
    res = *p;
    *p = res ^ mask;
    raw_local_irq_restore(flags);

    return (res & mask) != 0;
}

#include <asm-generic/bitops/non-atomic.h>

/*
 *  A note about Endian-ness.
 *  -------------------------
 *
 * When the ARM is put into big endian mode via CR15, the processor
 * merely swaps the order of bytes within words, thus:
 *
 *          ------------ physical data bus bits -----------
 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 * little     byte 3       byte 2       byte 1      byte 0
 * big        byte 0       byte 1       byte 2      byte 3
 *
 * This means that reading a 32-bit word at address 0 returns the same
 * value irrespective of the endian mode bit.
 *
 * Peripheral devices should be connected with the data bus reversed in
 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 * available from http://www.arm.com/.
 *
 * The following assumes that the data bus connectivity for big endian
 * mode has been followed.
 *
 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 */

/*
 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 */
extern void _set_bit_le(int nr, volatile unsigned long * p);
extern void _clear_bit_le(int nr, volatile unsigned long * p);
extern void _change_bit_le(int nr, volatile unsigned long * p);
extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
extern int _find_first_zero_bit_le(const void * p, unsigned size);
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);

/*
 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 */
extern void _set_bit_be(int nr, volatile unsigned long * p);
extern void _clear_bit_be(int nr, volatile unsigned long * p);
extern void _change_bit_be(int nr, volatile unsigned long * p);
extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
extern int _find_first_zero_bit_be(const void * p, unsigned size);
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);

#ifndef CONFIG_SMP
/*
 * The __* form of bitops are non-atomic and may be reordered.
 */
#define ATOMIC_BITOP_LE(name,nr,p)      \
    (__builtin_constant_p(nr) ?     \
     ____atomic_##name(nr, p) :     \
     _##name##_le(nr,p))

#define ATOMIC_BITOP_BE(name,nr,p)      \
    (__builtin_constant_p(nr) ?     \
     ____atomic_##name(nr, p) :     \
     _##name##_be(nr,p))
#else
#define ATOMIC_BITOP_LE(name,nr,p)  _##name##_le(nr,p)
#define ATOMIC_BITOP_BE(name,nr,p)  _##name##_be(nr,p)
#endif

#define NONATOMIC_BITOP(name,nr,p)      \
    (____nonatomic_##name(nr, p))

#ifndef __ARMEB__
/*
 * These are the little endian, atomic definitions.
 */
#define set_bit(nr,p)           ATOMIC_BITOP_LE(set_bit,nr,p)
#define clear_bit(nr,p)         ATOMIC_BITOP_LE(clear_bit,nr,p)
#define change_bit(nr,p)        ATOMIC_BITOP_LE(change_bit,nr,p)
#define test_and_set_bit(nr,p)      ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
#define test_and_clear_bit(nr,p)    ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
#define test_and_change_bit(nr,p)   ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
#define find_first_zero_bit(p,sz)   _find_first_zero_bit_le(p,sz)
#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_le(p,sz,off)
#define find_first_bit(p,sz)        _find_first_bit_le(p,sz)
#define find_next_bit(p,sz,off)     _find_next_bit_le(p,sz,off)

#define WORD_BITOFF_TO_LE(x)        ((x))

#else

/*
 * These are the big endian, atomic definitions.
 */
#define set_bit(nr,p)           ATOMIC_BITOP_BE(set_bit,nr,p)
#define clear_bit(nr,p)         ATOMIC_BITOP_BE(clear_bit,nr,p)
#define change_bit(nr,p)        ATOMIC_BITOP_BE(change_bit,nr,p)
#define test_and_set_bit(nr,p)      ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
#define test_and_clear_bit(nr,p)    ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
#define test_and_change_bit(nr,p)   ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
#define find_first_zero_bit(p,sz)   _find_first_zero_bit_be(p,sz)
#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_be(p,sz,off)
#define find_first_bit(p,sz)        _find_first_bit_be(p,sz)
#define find_next_bit(p,sz,off)     _find_next_bit_be(p,sz,off)

#define WORD_BITOFF_TO_LE(x)        ((x) ^ 0x18)

#endif

#if __LINUX_ARM_ARCH__ < 5

#include <asm-generic/bitops/ffz.h>
#include <asm-generic/bitops/__fls.h>
#include <asm-generic/bitops/__ffs.h>
#include <asm-generic/bitops/fls.h>
#include <asm-generic/bitops/ffs.h>

#else

static inline int constant_fls(int x)
{
    int r = 32;

    if (!x)
        return 0;
    if (!(x & 0xffff0000u)) {
        x <<= 16;
        r -= 16;
    }
    if (!(x & 0xff000000u)) {
        x <<= 8;
        r -= 8;
    }
    if (!(x & 0xf0000000u)) {
        x <<= 4;
        r -= 4;
    }
    if (!(x & 0xc0000000u)) {
        x <<= 2;
        r -= 2;
    }
    if (!(x & 0x80000000u)) {
        x <<= 1;
        r -= 1;
    }
    return r;
}

/*
 * On ARMv5 and above those functions can be implemented around
 * the clz instruction for much better code efficiency.
 */

static inline int fls(int x)
{
    int ret;

    if (__builtin_constant_p(x))
           return constant_fls(x);

    asm("clz\t%0, %1" : "=r" (ret) : "r" (x) : "cc");
        ret = 32 - ret;
    return ret;
}

#define __fls(x) (fls(x) - 1)
#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
#define __ffs(x) (ffs(x) - 1)
#define ffz(x) __ffs( ~(x) )

#endif

#include <asm-generic/bitops/fls64.h>

#include <asm-generic/bitops/sched.h>
#include <asm-generic/bitops/hweight.h>
#include <asm-generic/bitops/lock.h>

/*
 * Ext2 is defined to use little-endian byte ordering.
 * These do not need to be atomic.
 */
#define ext2_set_bit(nr,p)          \
        __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_set_bit_atomic(lock,nr,p)          \
            test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_clear_bit(nr,p)            \
        __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_clear_bit_atomic(lock,nr,p)        \
            test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_test_bit(nr,p)         \
        test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_find_first_zero_bit(p,sz)      \
        _find_first_zero_bit_le(p,sz)
#define ext2_find_next_zero_bit(p,sz,off)   \
        _find_next_zero_bit_le(p,sz,off)
#define ext2_find_next_bit(p, sz, off) \
        _find_next_bit_le(p, sz, off)

/*
 * Minix is defined to use little-endian byte ordering.
 * These do not need to be atomic.
 */
#define minix_set_bit(nr,p)         \
        __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_bit(nr,p)            \
        test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_and_set_bit(nr,p)        \
        __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_and_clear_bit(nr,p)      \
        __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_find_first_zero_bit(p,sz)     \
        _find_first_zero_bit_le(p,sz)

#endif /* __KERNEL__ */

#endif /* _ARM_BITOPS_H */





/* -*- C++ -*-
 *
 * shm-lib.cc
 *
 * Simple class for SysV shared memory segments
 *
 * (C) Stephen C. Tweedie <sct@redhat.com>, 2000
 */

#include "shm-lib.h"

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sched.h>

#include "bitops.h"

static void sys_assert(const char *where, int why)
{
    if (why)
        return;

    fprintf (stderr, "Error: %s: %s\n", where, strerror(errno));
    exit (1);
}

ShmSeg::ShmSeg (const char *name, int size_, int flags, int mode)
    : size(size_)
{
    int err;

    if (name) {
        key = ftok (name, 'S');
        sys_assert ("ftok", key != -1);
    } else
        key = IPC_PRIVATE;

    if (flags & O_CREAT) 
        shmid = shmget(key, size, IPC_CREAT | (mode & 0777));
    else 
        shmid = shmget(key, size, 0);
    sys_assert ("shmget", shmid != -1);

    address = (char *) shmat (shmid, 0, 0);
    sys_assert ("shmat", address != (char *) -1);

    // Auto-delete the attached shared memory segment after the last
    // user exits.

    err = shmctl (shmid, IPC_RMID, 0);
    sys_assert ("shmctl", err != -1);
}

ShmSeg::~ShmSeg ()
{
    int err;

    err = shmdt (address);
    sys_assert ("shmdt", err != -1);
}


//
// ShmSemArray stuff:
//
// Create a class to manage an array of semaphore bits, and to do atomic
// test-and-set / clear operations for locking in shared memory.
//

ShmSemaphore::ShmSemaphore (ShmSemArray &array_, int offset) 
    : array(array_)
{
    location = (unsigned long *) (array.address + (offset / sizeof(unsigned long)));
    bit = offset % sizeof(unsigned long);
}

void ShmSemaphore::up()
{
    clear_bit (bit, location);
}

void ShmSemaphore::down()
{
    while (test_and_set_bit (bit, location))
        sched_yield();
}

ShmSemArray::ShmSemArray (const char *name, int bits, int flags, int mode)
    : ShmSeg (name, (bits + sizeof(char)) / sizeof(char), flags, mode)
{
    memset (address, 0, size);
}

ShmSemaphore ShmSemArray::operator [] (int bit) 
{
    return ShmSemaphore (*this, bit);
}

我正在努力

$ g++ shm-lib.cc -o shm-lib
shm-lib.cc: In member function ‘void ShmSemaphore::up()’:
shm-lib.cc:85: error: ‘clear_bit’ was not declared in this scope
shm-lib.cc: In member function ‘void ShmSemaphore::down()’:
shm-lib.cc:90: error: ‘test_and_set_bit’ was not declared in this scope

我该如何解决这个问题?

谢谢

最佳答案

shm-lib.cc: In member function ‘void ShmSemaphore::up()’:
shm-lib.cc:85: error: ‘clear_bit’ was not declared in this scope
shm-lib.cc: In member function ‘void ShmSemaphore::down()’:
shm-lib.cc:90: error: ‘test_and_set_bit’ was not declared in this scope

我认为这些声明应该位于 ShmSemaphore 类内。因此检查成员函数。

谢谢。

关于c++ - 用 C 编译 C++ 代码,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5731915/

相关文章:

c++ - 自动 xvalue 优化

c++ - 如何将武器与相机对齐?

c++ - 检测到堆栈崩溃/段错误

c - 使用 Nucleo-f401re 板从 Lepton FLIR 相机获取连续流

简单查询的 MySQL 性能问题

linux - 如何利用您自己的编程语言使用 VDSO 对象?

Linux线程 sleep 与读取

c++ - 无法运行 DLL 链接的 C++ exe。 "This program cannot be run in DOS mode."错误

c++ - 使用 Eclipse 调试 LLVM

java - 在 JNI 和 C 中释放持久数组