android - Renderscript 中的直方图匹配

标签 android histogram matching renderscript

为了对齐两个灰度图像的强度值(作为进一步处理的第一步),我编写了一个 Java 方法:

  1. 将两个图像的位图转换为两个包含位图强度的 int[] 数组(我在这里只采用红色分量,因为它是灰度的,即 r=g=b ) .

    public static int[] bmpToData(Bitmap bmp){
    int width = bmp.getWidth();
    int height = bmp.getHeight();
    int anzpixel = width*height;
    int [] pixels = new int[anzpixel];
    int [] data = new int[anzpixel];  
    bmp.getPixels(pixels, 0, width, 0, 0, width, height);
    for (int i = 0 ; i < anzpixel ; i++) {
    int p = pixels[i];
    int r = (p & 0xff0000) >> 16;
    //int g = (p & 0xff00) >> 8;
    //int b = p & 0xff;
    data[i] = r;
    }
    return data;
    }
    
  2. 将位图 2 的累积强度分布与位图 1 的累积强度分布对齐

        //aligns the intensity distribution of a grayscale picture moving    (given by int[] //data2) the the intensity distribution of a reference picture fixed (given by // int[] data1)
    public static int[] histMatch(int[] data1, int[] data2){
    
       int anzpixel = data1.length;
       int[] histogram_fixed = new int[256];
       int[] histogram_moving = new int[256];
       int[] cumhist_fixed = new int[256];
       int[] cumhist_moving = new int[256];
       int i=0;
       int j=0;
    
       //read intensities of fixed und moving in histogram
       for (int n = 0; n < anzpixel; n++) {
          histogram_fixed[data1[n]]++;
          histogram_moving[data2[n]]++;
       }
    
       // calc cumulated distributions
       cumhist_fixed[0]=histogram_fixed[0];
       cumhist_moving[0]=histogram_moving[0];
       for ( i=1; i < 256; ++i ) {
          cumhist_fixed[i] = cumhist_fixed[i-1]+histogram_fixed[i];
          cumhist_moving[i] = cumhist_moving[i-1]+histogram_moving [i];
       }
    
       // look-up-table lut[]. For each quantile i of the moving picture search     the 
       // value j of the fixed picture where the quantile is the same as that of moving   
       int[] lut = new int[anzpixel];
       j=0;
       for ( i=0; i < 256; ++i ){
          while(cumhist_fixed[j]< cumhist_moving[i]){
             j++;
          }
    
          // check, whether the distance to the next-lower intensity is even lower, and if so, take this value
          if ((j!=0) && ((cumhist_fixed[j-1]- cumhist_fixed[i]) < (cumhist_fixed[j]- cumhist_fixed[i]))){
             lut[i]= (j-1);
          }
          else {
             lut[i]= (j);
          }
       }
    
       // apply the lut[] to moving picture.
       i=0;
       for (int n = 0; n < anzpixel; n++) {
          data2[n]=(int) lut[data2[n]];
       }
       return data2;
    }
    
  3. int[] 数组转换回位图。

    public static Bitmap dataToBitmap(int[] data, int width, int heigth) {
     int index=0;
     Bitmap bmp = Bitmap.createBitmap(width, heigth, Bitmap.Config.ARGB_8888);
     for (int x = 0; x < width; x++) {
      for (int y = 0; y < heigth; y++) {
         index=y*width+x;
         int c = data[index];
         bmp.setPixel(x,y,Color.rgb(c, c, c));
         }
     }
     return bmp;
    }
    

虽然核心过程 2) 简单且快速,但转换步骤 1) 和 3) 效率相当低。在 Renderscript 中完成整个事情会非常酷。但是,老实说,由于缺少文档,我完全迷失了这样做,尽管有许多关于 Renderscript 可以执行的令人印象深刻的示例,但我看不到从这些可能性中受益的方法(没有书籍,没有文档)。非常感谢任何建议!

最佳答案

首先,使用 Android Studio“导入示例...”并选择基本渲染脚本。这将为您提供一个我们现在将修改的工作项目。

首先,让我们向 MainActivity 添加更多 Allocation 引用。我们将使用它们在 Java 和 Renderscript 之间传递图像数据、直方图和 LUT。

private Allocation mInAllocation;
private Allocation mInAllocation2;
private Allocation[] mOutAllocations;
private Allocation mHistogramAllocation;
private Allocation mHistogramAllocation2;
private Allocation mLUTAllocation;

然后在 onCreate() 中加载另一个图像,您还需要将其添加到/res/drawables/中。

    mBitmapIn2 = loadBitmap(R.drawable.cat_480x400);

createScript()中创建额外的分配:

    mInAllocation2 = Allocation.createFromBitmap(mRS, mBitmapIn2);
    mHistogramAllocation = Allocation.createSized(mRS, Element.U32(mRS), 256);
    mHistogramAllocation2 = Allocation.createSized(mRS, Element.U32(mRS), 256);
    mLUTAllocation = Allocation.createSized(mRS, Element.U32(mRS), 256);

现在是主要部分(在 RenderScriptTask 中):

            /*
             * Invoke histogram kernel for both images
             */
            mScript.bind_histogram(mHistogramAllocation);
            mScript.forEach_compute_histogram(mInAllocation);

            mScript.bind_histogram(mHistogramAllocation2);
            mScript.forEach_compute_histogram(mInAllocation2);


            /*
             * Variables copied verbatim from your code.
             */
            int []histogram_fixed = new int[256];
            int []histogram_moving = new int[256];
            int[] cumhist_fixed = new int[256];
            int[] cumhist_moving = new int[256];
            int i=0;
            int j=0;

            // copy computed histograms to Java side
            mHistogramAllocation.copyTo(histogram_fixed);
            mHistogramAllocation2.copyTo(histogram_moving);

            // your code again...
            // calc cumulated distributions
            cumhist_fixed[0]=histogram_fixed[0];
            cumhist_moving[0]=histogram_moving[0];

            for ( i=1; i < 256; ++i ) {
                cumhist_fixed[i] = cumhist_fixed[i-1]+histogram_fixed[i];
                cumhist_moving[i] = cumhist_moving[i-1]+histogram_moving [i];
            }

            // look-up-table lut[]. For each quantile i of the moving picture search     the
            // value j of the fixed picture where the quantile is the same as that of moving
            int[] lut = new int[256];
            j=0;
            for ( i=0; i < 256; ++i ){
                while(cumhist_fixed[j]< cumhist_moving[i]){
                    j++;
                }

                // check, whether the distance to the next-lower intensity is even lower, and if so, take this value
                if ((j!=0) && ((cumhist_fixed[j-1]- cumhist_fixed[i]) < (cumhist_fixed[j]- cumhist_fixed[i]))){
                    lut[i]= (j-1);
                }
                else {
                    lut[i]= (j);
                }
            }

            // copy the LUT to Renderscript side
            mLUTAllocation.copyFrom(lut);
            mScript.bind_LUT(mLUTAllocation);

            // Apply LUT to the destination image
            mScript.forEach_apply_histogram(mInAllocation2, mInAllocation2);


            /*
             * Copy to bitmap and invalidate image view
             */
            //mOutAllocations[index].copyTo(mBitmapsOut[index]);

            // copy back to Bitmap in preparation for viewing the results
            mInAllocation2.copyTo((mBitmapsOut[index]));

注意事项:

  • 在您的代码部分中,我还修复了 LUT 分配大小 - 仅需要 256 个位置,
  • 如您所见,我将累积直方图和 LUT 的计算留在了 Java 端。由于数据依赖性和计算规模小,这些很难有效地并行化,但考虑到后者,我认为这不是问题。

最后是 Renderscript 代码。唯一不明显的部分是使用 rsAtomicInc() 来增加直方图箱中的值 - 这是必要的,因为可能有许多线程试图同时增加同一箱。

#pragma version(1)
#pragma rs java_package_name(com.example.android.basicrenderscript)
#pragma rs_fp_relaxed

int32_t *histogram;
int32_t *LUT;

void __attribute__((kernel)) compute_histogram(uchar4 in)
{
    volatile int32_t *addr = &histogram[in.r];
    rsAtomicInc(addr);
}

uchar4 __attribute__((kernel)) apply_histogram(uchar4 in)
{
    uchar val = LUT[in.r];
    uchar4 result;
    result.r = result.g = result.b = val;
    result.a = in.a;

    return(result);
}

关于android - Renderscript 中的直方图匹配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31757109/

相关文章:

java - 发布请求。安卓

javascript - D3 条形图 Axis 怪癖

date - ElasticSearch - 日期直方图结果的分页

Python:如何获得在某个位置花费的时间分布

python - 在 Python 中实现比较类的 OOP 方法

java - 使用 Google App Engine 作为 Android 应用程序后端的示例

java - 将 ScrollView 添加到整个 Activity

java - 在表面 View 中打开前置摄像头

sql - 按照表 2 数据的顺序使用表 2 从表 1 检索数据

Python正则表达式匹配街道名称和门牌号