c - 对操作系统内核链接的 undefined reference

标签 c assembly operating-system kernel

我有一个问题。我使用本教程制作简单的操作系统内核:http://wiki.osdev.org/Bare_Bones#Linking_the_Kernel

但是,如果我想链接文件 boot.o 和 kernel.o,gcc 编译器会返回此错误:

boot.o: In function `start':
boot.asm:(.text+0x6): undefined reference to `kernel_main'
collect2.exe: error: ld returned 1 exit status.

文件来源:

启动.asm

; Declare constants used for creating a multiboot header.
MBALIGN     equ  1<<0                   ; align loaded modules on page boundaries
MEMINFO     equ  1<<1                   ; provide memory map
FLAGS       equ  MBALIGN | MEMINFO      ; this is the Multiboot 'flag' field
MAGIC       equ  0x1BADB002             ; 'magic number' lets bootloader find the header
CHECKSUM    equ -(MAGIC + FLAGS)        ; checksum of above, to prove we are multiboot

; Declare a header as in the Multiboot Standard. We put this into a special
; section so we can force the header to be in the start of the final program.
; You don't need to understand all these details as it is just magic values that
; is documented in the multiboot standard. The bootloader will search for this
; magic sequence and recognize us as a multiboot kernel.
section .multiboot
align 4
    dd MAGIC
    dd FLAGS
    dd CHECKSUM

; Currently the stack pointer register (esp) points at anything and using it may
; cause massive harm. Instead, we'll provide our own stack. We will allocate
; room for a small temporary stack by creating a symbol at the bottom of it,
; then allocating 16384 bytes for it, and finally creating a symbol at the top.
section .bootstrap_stack
align 4
stack_bottom:
times 16384 db 0
stack_top:

; The linker script specifies _start as the entry point to the kernel and the
; bootloader will jump to this position once the kernel has been loaded. It
; doesn't make sense to return from this function as the bootloader is gone.
section .text
global _start
_start:
    ; Welcome to kernel mode! We now have sufficient code for the bootloader to
    ; load and run our operating system. It doesn't do anything interesting yet.
    ; Perhaps we would like to call printf("Hello, World\n"). You should now
    ; realize one of the profound truths about kernel mode: There is nothing
    ; there unless you provide it yourself. There is no printf function. There
    ; is no <stdio.h> header. If you want a function, you will have to code it
    ; yourself. And that is one of the best things about kernel development:
    ; you get to make the entire system yourself. You have absolute and complete
    ; power over the machine, there are no security restrictions, no safe
    ; guards, no debugging mechanisms, there is nothing but what you build.

    ; By now, you are perhaps tired of assembly language. You realize some
    ; things simply cannot be done in C, such as making the multiboot header in
    ; the right section and setting up the stack. However, you would like to
    ; write the operating system in a higher level language, such as C or C++.
    ; To that end, the next task is preparing the processor for execution of
    ; such code. C doesn't expect much at this point and we only need to set up
    ; a stack. Note that the processor is not fully initialized yet and stuff
    ; such as floating point instructions are not available yet.

    ; To set up a stack, we simply set the esp register to point to the top of
    ; our stack (as it grows downwards).
    mov esp, stack_top

    ; We are now ready to actually execute C code. We cannot embed that in an
    ; assembly file, so we'll create a kernel.c file in a moment. In that file,
    ; we'll create a C entry point called kernel_main and call it here.
    extern kernel_main
    call kernel_main

    ; In case the function returns, we'll want to put the computer into an
    ; infinite loop. To do that, we use the clear interrupt ('cli') instruction
    ; to disable interrupts, the halt instruction ('hlt') to stop the CPU until
    ; the next interrupt arrives, and jumping to the halt instruction if it ever
    ; continues execution, just to be safe.
    cli
.hang:
    hlt
    jmp .hang

内核.c

#if !defined(__cplusplus)
#include <stdbool.h> /* C doesn't have booleans by default. */
#endif
#include <stddef.h>
#include <stdint.h>

/* Check if the compiler thinks if we are targeting the wrong operating system. */
#if defined(__linux__)
#error "You are not using a cross-compiler, you will most certainly run into trouble"
#endif

/* This tutorial will only work for the 32-bit ix86 targets. */
#if !defined(__i386__)
#error "This tutorial needs to be compiled with a ix86-elf compiler"
#endif

/* Hardware text mode color constants. */
enum vga_color
{
    COLOR_BLACK = 0,
    COLOR_BLUE = 1,
    COLOR_GREEN = 2,
    COLOR_CYAN = 3,
    COLOR_RED = 4,
    COLOR_MAGENTA = 5,
    COLOR_BROWN = 6,
    COLOR_LIGHT_GREY = 7,
    COLOR_DARK_GREY = 8,
    COLOR_LIGHT_BLUE = 9,
    COLOR_LIGHT_GREEN = 10,
    COLOR_LIGHT_CYAN = 11,
    COLOR_LIGHT_RED = 12,
    COLOR_LIGHT_MAGENTA = 13,
    COLOR_LIGHT_BROWN = 14,
    COLOR_WHITE = 15,
};

uint8_t make_color(enum vga_color fg, enum vga_color bg)
{
    return fg | bg << 4;
}

uint16_t make_vgaentry(char c, uint8_t color)
{
    uint16_t c16 = c;
    uint16_t color16 = color;
    return c16 | color16 << 8;
}

size_t strlen(const char* str)
{
    size_t ret = 0;
    while ( str[ret] != 0 )
        ret++;
    return ret;
}

static const size_t VGA_WIDTH = 80;
static const size_t VGA_HEIGHT = 25;

size_t terminal_row;
size_t terminal_column;
uint8_t terminal_color;
uint16_t* terminal_buffer;

void terminal_initialize()
{
    terminal_row = 0;
    terminal_column = 0;
    terminal_color = make_color(COLOR_LIGHT_GREY, COLOR_BLACK);
    terminal_buffer = (uint16_t*) 0xB8000;
    for ( size_t y = 0; y < VGA_HEIGHT; y++ )
    {
        for ( size_t x = 0; x < VGA_WIDTH; x++ )
        {
            const size_t index = y * VGA_WIDTH + x;
            terminal_buffer[index] = make_vgaentry(' ', terminal_color);
        }
    }
}

void terminal_setcolor(uint8_t color)
{
    terminal_color = color;
}

void terminal_putentryat(char c, uint8_t color, size_t x, size_t y)
{
    const size_t index = y * VGA_WIDTH + x;
    terminal_buffer[index] = make_vgaentry(c, color);
}

void terminal_putchar(char c)
{
    terminal_putentryat(c, terminal_color, terminal_column, terminal_row);
    if ( ++terminal_column == VGA_WIDTH )
    {
        terminal_column = 0;
        if ( ++terminal_row == VGA_HEIGHT )
        {
            terminal_row = 0;
        }
    }
}

void terminal_writestring(const char* data)
{
    size_t datalen = strlen(data);
    for ( size_t i = 0; i < datalen; i++ )
        terminal_putchar(data[i]);
}
void kernel_main()
{
    terminal_initialize();
    /* Since there is no support for newlines in terminal_putchar yet, \n will
       produce some VGA specific character instead. This is normal. */
    terminal_writestring("Hello\n");
}

最佳答案

collect2.exe 引用来看,您似乎在 Microsoft® Windows® 上使用 GCC(例如,使用 Cygwin)。这意味着您似乎正在使用的 native 可执行文件格式会在 C 标识符前面加上下划线,以使它们与程序集标识符分开,这是大多数对象格式,但不是现代 Unix 下广泛传播的 ELF 格式。

如果您将调用更改为 _kernel_main,链接错误可能会消失。

但请注意从您的问题中引用的这一行:

#error "This tutorial needs to be compiled with a ix86-elf compiler"

您违反了所用教程的基本原则。我建议您获取适用于 i386(32 位)的 GNU/Linux 或 BSD VM,并在其中运行教程。

关于c - 对操作系统内核链接的 undefined reference ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27669275/

相关文章:

c - 如何限制用户只能输入整数并拒绝 scanf 中的任何其他字符?

linux - epoll()、互斥量和信号量之类的系统调用是如何在后台实现的?

windows - 锁定执行文件 : Windows does, Linux 没有。为什么?

c - 如何覆盖系统c库头?

c - 如何在没有警告的情况下处理这些 typedef?

c++ - 从堆栈帧获取函数名称

algorithm - 这个求平方根算法的名称是什么?

python - 单线程中的 os.mkdir 竞争条件?如何确保在继续之前创建目录

c - 如何使用 C 语言访问命令行应用程序包

c - 如何从 ml64.exe(MSVC 64 位 X64 汇编程序)访问线程本地存储?