c++ - 自上而下的动态编程 VS 递归朴素解决方案。检查运行时执行

标签 c++ algorithm recursion dynamic-programming

我编写了一个程序,用于计算长度为 K 的递增子序列的总数。

该计划以两种方式实现。

  1. 朴素递归方式increase_subseq_k()

  2. 自上而下的DP方式increase_subseq_k_top_down()

代码:

using namespace std;
using namespace std::chrono;

int helper(vector<int> v, int k, int idx){
    if(k==0) return 0;
    if(k==1) return 1;
    int count=0;
    for(int i=idx+1; i<v.size(); i++)
    {
        if(v[i]>v[idx]){
            count+=helper(v,k-1,i);
        }
    }
    return count;
}

int increase_subseq_k(vector<int> v, int k){
    int count=0;
    for(int i=0; i<v.size(); i++)
    {
        count+=helper(v,k,i);
    }
    return count;

}

int helper_top_down(vector<int> v, int k, int idx, vector<vector<int>>& dp){
    if(k==0){
        dp[k][idx]=0;
        return 0;
    }
    if(k==1){
        dp[k][idx]=1;
        return 1;
    }
    if(dp[k][idx]!=-1) return dp[k][idx];
    int count=0;
    for(int i=idx+1; i<v.size(); i++)
    {
        if(v[i]>v[idx]){
            count+=helper_top_down(v,k-1,i, dp);
        }
    }
    dp[k][idx]=count;
    return count;
}

int increase_subseq_k_top_down(vector<int> v, int k){
    vector<vector<int>> dp(k+1, vector<int>(v.size(), -1));
    int count=0;
    for(int i=0; i<v.size(); i++)
    {
        count+=helper_top_down(v,k,i, dp);
    }
    return count;

}

int main()
{
    vector<int> v = {12, 8, 11, 13, 10, 15, 14, 16, 20};
    high_resolution_clock::time_point t1 = high_resolution_clock::now();
    cout<<increase_subseq_k(v, 4)<<endl;
    high_resolution_clock::time_point t2 = high_resolution_clock::now();
    auto duration = duration_cast<microseconds>( t2 - t1 ).count();
    cout<<duration<<endl;

    high_resolution_clock::time_point t3 = high_resolution_clock::now();
    cout<<increase_subseq_k_top_down(v, 4)<<endl;
    high_resolution_clock::time_point t4 = high_resolution_clock::now();
    auto duration2 = duration_cast<microseconds>( t4 - t3 ).count();
    cout<<duration2<<endl;
}

我的问题是:我正在尝试计算这两种不同方法的执行时间,但我得到的数字非常相似,这意味着自上而下的 DP 方法实际上根本没有改善算法的运行时间。

任何见解将不胜感激!谢谢

最佳答案

  1. 你没有提到你得到什么时间。我在我的 2018 MacBook Pro i7 3.1 GHz 上对其进行了测试,我得到的递归实现时间约为 46 毫秒,而动态编程实现时间为 13 毫秒。但我将在下面解释为什么应丢弃这些值。
  2. @Matt Timmermans 在评论中指出,像这样用小输入测量一个小函数一次并不能提供可靠的时间。相反,我建议您使用微基准测试框架。这是我使用“google-benchmark”的实现。
  3. 您正在测量 std::cout << ... << std::endl; . std::endl包括 std::flush这很慢。

复杂性

您的两个解决方案是 O(N^2) 和 O(N^3),其中 N 等于 v.size()在你的代码中。它还依赖于 K,其中 K 是函数的第二个参数。 (这方面的数字并不令人信服,可能是 log K,和 K log K,但仅限于固定为 30 的 N)。

复杂度计算的代码可以在最后找到。这是结果表。查找行 BM_Generic<increase_subseq_k>_BigO 289.38 N^3 288.28 N^3BM_Generic<increase_subseq_k_top_down>_BigO 6.20 N^2 6.20 N^2 :

---------------------------------------------------------------------------------------
Benchmark                                                Time           CPU Iterations
---------------------------------------------------------------------------------------
BM_Generic<increase_subseq_k>/5/5/42                    40 ns         40 ns   13791473
BM_Generic<increase_subseq_k>/10/5/42                  267 ns        266 ns    2481574
BM_Generic<increase_subseq_k>/20/5/42                 2621 ns       2613 ns     257017
BM_Generic<increase_subseq_k>/40/5/42                61676 ns      61502 ns      11720
BM_Generic<increase_subseq_k>/80/5/42              1424755 ns    1420357 ns        502
BM_Generic<increase_subseq_k>/160/5/42            49581330 ns   49290286 ns         14
BM_Generic<increase_subseq_k>/320/5/42          2023321331 ns 2022037000 ns          1
BM_Generic<increase_subseq_k>/640/5/42          76810469575 ns 76516177000 ns          1
BM_Generic<increase_subseq_k>_BigO                  289.38 N^3     288.28 N^3 
BM_Generic<increase_subseq_k>_RMS                       27 %         27 % 
BM_Generic<increase_subseq_k_top_down>/5/5/42          839 ns        839 ns     756855
BM_Generic<increase_subseq_k_top_down>/10/5/42        1043 ns       1042 ns     663193
BM_Generic<increase_subseq_k_top_down>/20/5/42        1795 ns       1794 ns     386905
BM_Generic<increase_subseq_k_top_down>/40/5/42        5996 ns       5995 ns     119031
BM_Generic<increase_subseq_k_top_down>/80/5/42       31001 ns      30993 ns      22078
BM_Generic<increase_subseq_k_top_down>/160/5/42     150695 ns     150350 ns       4748
BM_Generic<increase_subseq_k_top_down>/320/5/42     631402 ns     630742 ns       1155
BM_Generic<increase_subseq_k_top_down>/640/5/42    2541040 ns    2540148 ns        277
BM_Generic<increase_subseq_k_top_down>_BigO           6.20 N^2       6.20 N^2 
BM_Generic<increase_subseq_k_top_down>_RMS               1 %          1 % 

下面关于我的解决方案的注释

  • 基准是针对固定输入的。随着输入大小的增加,您可能会关心性能。我还没有实现这个。这是如何执行此操作的文档:https://github.com/google/benchmark . 请参阅下面的更新!
  • 带有std::cout的代码打印到命令行,您需要使用 grep BM 对其进行过滤或类似的,只得到你想要的输出。

基准测试结果

2018-07-03 20:50:35
Running ./benchmark_main
Run on (8 X 3100 MHz CPU s)
CPU Caches:
  L1 Data 32K (x4)
  L1 Instruction 32K (x4)
  L2 Unified 262K (x4)
  L3 Unified 8388K (x1)
------------------------------------------------------------
Benchmark                     Time           CPU Iterations
------------------------------------------------------------
BM_Subseq                 15086 ns      15079 ns      40718
BM_SubseqTopDown           9198 ns       9196 ns      70722
BM_SubseqNoIO             11782 ns      11774 ns      55523
BM_SubseqTopDownNoIO       6391 ns       6384 ns     108056

基准测试代码

#include <benchmark/benchmark.h>


#include "subsequence.h"

static void BM_Subseq(benchmark::State &state) {
    std::vector<int> v = {12, 8, 11, 13, 10, 15, 14, 16, 20};
    for (auto _ : state) {
        std::cout << increase_subseq_k(v, 4) << std::endl;
    }
}

static void BM_SubseqNoIO(benchmark::State &state) {
    std::vector<int> v = {12, 8, 11, 13, 10, 15, 14, 16, 20};
    auto t1 = std::chrono::high_resolution_clock::now();
    for (auto _ : state) {
        benchmark::DoNotOptimize(increase_subseq_k(v, 4));
    }
}


static void BM_SubseqTopDown(benchmark::State &state) {
    std::vector<int> v = {12, 8, 11, 13, 10, 15, 14, 16, 20};
    for (auto _ : state) {
        std::cout << increase_subseq_k_top_down(v, 4) << std::endl;
    }
}

static void BM_SubseqTopDownNoIO(benchmark::State &state) {
    std::vector<int> v = {12, 8, 11, 13, 10, 15, 14, 16, 20};
    for (auto _ : state) {
        benchmark::DoNotOptimize(increase_subseq_k_top_down(v, 4));
    }
}

BENCHMARK(BM_Subseq);
BENCHMARK(BM_SubseqTopDown);
BENCHMARK(BM_SubseqNoIO);
BENCHMARK(BM_SubseqTopDownNoIO);

BENCHMARK_MAIN();

更新:复杂性代码

这是计算复杂度的代码。

   #include <random>
#include <benchmark/benchmark.h>
#include "subsequence.h"

std::vector<int> GetRandomVector(std::size_t size, int seed) {
    std::vector<int> result;
    result.reserve(size);

    std::mt19937 gen(seed);
    // TODO: What should be the right distribution?
    std::uniform_int_distribution<> dis(0, 100);

    for (std::size_t i = 0; i < size; i++) {
        result.push_back(dis(gen));
    }
    return result;
}

/** Wrapper code to benchmark a function F (which is compiled into the code as a
 * template argument). We use it here to evaluate on "increase_subseq_k" and
 * "increase_subseq_k_top_down".
 *
 * @tparam F Function to benchmark
 */
template<int (*F)(const std::vector<int> &, int)>
static void BM_Generic(benchmark::State &state) {
    std::vector<int> v = GetRandomVector(state.range(0), state.range(2));
    for (auto _ : state) {
        benchmark::DoNotOptimize(F(v, state.range(1)));
    }
    state.SetComplexityN(state.range(0));
}


/** Generates custom arguments of triples (n, k, seed). Seed is used for the
 * random vector generator and hardcoded to 42.
 *
 * Play around with this function. I've left the clearest example as default
 * (showing very little variation from  the O(N^2) and O(N^3) of the two
 * implementations. But also interesting is to generate different values for 'k'
 * while varying n. However, google-benchmark only does complexity analysis on
 * one variable, so the analysis would have to be done in a different tool.
 *
 * Just iterating over k gives log K and K log K complexity, but only when I
 * kept n=30.
 */
static void CustomArguments(benchmark::internal::Benchmark *b) {
    constexpr int seed = 42;
    const int i = 5;
//        const int n = 30;
    for (int n = std::max(1, i); n < 1000; n *= 2)
//                for (int i = 1; i <= n; i++)
        b->Args({n, i, seed});
}

BENCHMARK_TEMPLATE(BM_Generic, increase_subseq_k)->Apply(
        CustomArguments)->Complexity();
BENCHMARK_TEMPLATE(BM_Generic, increase_subseq_k_top_down)->Apply(
        CustomArguments)->Complexity();

BENCHMARK_MAIN();

关于c++ - 自上而下的动态编程 VS 递归朴素解决方案。检查运行时执行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51164925/

相关文章:

c++ - 在哪里使用 "std::valarray"是个好主意?

c++ - 在 Cap'nProto 中读取/写入配置结构

algorithm - Web挖掘-分类算法

Python 递归函数奇怪的行为

Python递归排列

c++ - 使用 Android NDK 构建 mariadb 客户端

c++ - C++循环链表的递归基本情况

javascript - 将并排的 Rects 连接到一个大 Rect

c# - 联合条件和多个 Where 方法调用之间有区别吗?

java - 带局部变量的递归函数不执行 if 语句