python - 将数字列表拆分为 n 个 block ,使这些 block 具有(接近)相等的总和并保持原始顺序

标签 python algorithm partitioning

这不是标准的分区问题,因为我需要维护列表中元素的顺序。

例如,如果我有一个列表

[1, 6, 2, 3, 4, 1, 7, 6, 4]

我想要两个 block ,那么分割应该给

[[1, 6, 2, 3, 4, 1], [7, 6, 4]] 

每边总和为 17。对于三个 block ,结果将是

[[1, 6, 2, 3], [4, 1, 7], [6, 4]]

对于 12、12 和 10 的总和。

编辑以获取更多解释

我目前将总和除以 block 数并将其用作目标,然后迭代直到接近该目标。问题是某些数据集可能会搞乱算法,例如试图将以下内容分成 3 份:-

[95, 15, 75, 25, 85, 5]

总和为 300,目标为 100。第一个 block 的总和为 95,第二个总和为 90,第三个总和为 110,5 为“剩余”。将它附加到它应该出现的位置会得到 95、90、115,其中更“合理”的解决方案是 110、100、90。

结束编辑

背景:

我有一个包含不同高度的文本(歌词)的列表,我想将文本分成任意数量的列。目前我根据所有行的总高度计算目标高度,但显然这是一个一致的低估,在某些情况下会导致次优解决方案(最后一列明显更高)。

最佳答案

此方法定义分区边界,将数组划分为大致相等数量的元素,然后反复搜索更好的分区,直到找不到更多为止。它不同于大多数其他已发布的解决方案,因为它希望通过尝试多个不同的分区来找到最佳解决方案。其他解决方案试图通过阵列单次传递创建良好的分区,但我想不出保证最优的单次传递算法。

此处的代码是此算法的有效实现,但可能难以理解,因此在末尾包含一个更具可读性的版本作为附录。

def partition_list(a, k):
    if k <= 1: return [a]
    if k >= len(a): return [[x] for x in a]
    partition_between = [(i+1)*len(a)/k for i in range(k-1)]
    average_height = float(sum(a))/k
    best_score = None
    best_partitions = None
    count = 0

    while True:
        starts = [0]+partition_between
        ends = partition_between+[len(a)]
        partitions = [a[starts[i]:ends[i]] for i in range(k)]
        heights = map(sum, partitions)

        abs_height_diffs = map(lambda x: abs(average_height - x), heights)
        worst_partition_index = abs_height_diffs.index(max(abs_height_diffs))
        worst_height_diff = average_height - heights[worst_partition_index]

        if best_score is None or abs(worst_height_diff) < best_score:
            best_score = abs(worst_height_diff)
            best_partitions = partitions
            no_improvements_count = 0
        else:
            no_improvements_count += 1

        if worst_height_diff == 0 or no_improvements_count > 5 or count > 100:
            return best_partitions
        count += 1

        move = -1 if worst_height_diff < 0 else 1
        bound_to_move = 0 if worst_partition_index == 0\
                        else k-2 if worst_partition_index == k-1\
                        else worst_partition_index-1 if (worst_height_diff < 0) ^ (heights[worst_partition_index-1] > heights[worst_partition_index+1])\
                        else worst_partition_index
        direction = -1 if bound_to_move < worst_partition_index else 1
        partition_between[bound_to_move] += move * direction

def print_best_partition(a, k):
    print 'Partitioning {0} into {1} partitions'.format(a, k)
    p = partition_list(a, k)
    print 'The best partitioning is {0}\n    With heights {1}\n'.format(p, map(sum, p))

a = [1, 6, 2, 3, 4, 1, 7, 6, 4]
print_best_partition(a, 1)
print_best_partition(a, 2) 
print_best_partition(a, 3)
print_best_partition(a, 4)

b = [1, 10, 10, 1]
print_best_partition(b, 2)

import random
c = [random.randint(0,20) for x in range(100)]
print_best_partition(c, 10)

d = [95, 15, 75, 25, 85, 5]
print_best_partition(d, 3)

根据您的用途,可能需要进行一些修改。例如,为了确定是否找到了最佳分区,当分区之间没有高度差时,该算法停止,它没有找到比连续 5 次以上迭代看到的最好的东西更好的东西,或者在 100 次之后总迭代次数作为一个包罗万象的停止点。您可能需要调整这些常量或使用不同的方案。如果您的高度形成了一个复杂的值(value)观景观,知道何时停止可能会遇到试图逃避局部最大值等经典问题。

输出

Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 1 partitions
The best partitioning is [[1, 6, 2, 3, 4, 1, 7, 6, 4]]
With heights [34]

Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 2 partitions
The best partitioning is [[1, 6, 2, 3, 4, 1], [7, 6, 4]]
With heights [17, 17]

Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 3 partitions
The best partitioning is [[1, 6, 2, 3], [4, 1, 7], [6, 4]]
With heights [12, 12, 10]

Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 4 partitions
The best partitioning is [[1, 6], [2, 3, 4], [1, 7], [6, 4]]
With heights [7, 9, 8, 10]

Partitioning [1, 10, 10, 1] into 2 partitions
The best partitioning is [[1, 10], [10, 1]]
With heights [11, 11]

Partitioning [7, 17, 17, 1, 8, 8, 12, 0, 10, 20, 17, 13, 12, 4, 1, 1, 7, 11, 7, 13, 9, 12, 3, 18, 9, 6, 7, 19, 20, 17, 7, 4, 3, 16, 20, 6, 7, 12, 16, 3, 6, 12, 9, 4, 3, 2, 18, 1, 16, 14, 17, 7, 0, 14, 13, 3, 5, 3, 1, 5, 5, 13, 16, 0, 16, 7, 3, 8, 1, 20, 16, 11, 15, 3, 10, 10, 2, 0, 12, 12, 0, 18, 20, 3, 10, 9, 13, 12, 15, 6, 14, 16, 6, 12, 9, 9, 16, 14, 19, 1] into 10 partitions
The best partitioning is [[7, 17, 17, 1, 8, 8, 12, 0, 10, 20], [17, 13, 12, 4, 1, 1, 7, 11, 7, 13, 9], [12, 3, 18, 9, 6, 7, 19, 20], [17, 7, 4, 3, 16, 20, 6, 7, 12], [16, 3, 6, 12, 9, 4, 3, 2, 18, 1, 16], [14, 17, 7, 0, 14, 13, 3, 5, 3, 1, 5, 5], [13, 16, 0, 16, 7, 3, 8, 1, 20, 16], [11, 15, 3, 10, 10, 2, 0, 12, 12, 0, 18], [20, 3, 10, 9, 13, 12, 15, 6, 14], [16, 6, 12, 9, 9, 16, 14, 19, 1]]
With heights [100, 95, 94, 92, 90, 87, 100, 93, 102, 102]

Partitioning [95, 15, 75, 25, 85, 5] into 3 partitions
The best partitioning is [[95, 15], [75, 25], [85, 5]]
With heights [110, 100, 90]

编辑

添加了新的测试用例 [95, 15, 75, 25, 85, 5],此方法可以正确处理。

附录

此版本的算法更易于阅读和理解,但由于较少利用内置的 Python 功能,因此有点长。然而,它的执行时间似乎相当,甚至稍快。

#partition list a into k partitions
def partition_list(a, k):
    #check degenerate conditions
    if k <= 1: return [a]
    if k >= len(a): return [[x] for x in a]
    #create a list of indexes to partition between, using the index on the
    #left of the partition to indicate where to partition
    #to start, roughly partition the array into equal groups of len(a)/k (note
    #that the last group may be a different size) 
    partition_between = []
    for i in range(k-1):
        partition_between.append((i+1)*len(a)/k)
    #the ideal size for all partitions is the total height of the list divided
    #by the number of paritions
    average_height = float(sum(a))/k
    best_score = None
    best_partitions = None
    count = 0
    no_improvements_count = 0
    #loop over possible partitionings
    while True:
        #partition the list
        partitions = []
        index = 0
        for div in partition_between:
            #create partitions based on partition_between
            partitions.append(a[index:div])
            index = div
        #append the last partition, which runs from the last partition divider
        #to the end of the list
        partitions.append(a[index:])
        #evaluate the partitioning
        worst_height_diff = 0
        worst_partition_index = -1
        for p in partitions:
            #compare the partition height to the ideal partition height
            height_diff = average_height - sum(p)
            #if it's the worst partition we've seen, update the variables that
            #track that
            if abs(height_diff) > abs(worst_height_diff):
                worst_height_diff = height_diff
                worst_partition_index = partitions.index(p)
        #if the worst partition from this run is still better than anything
        #we saw in previous iterations, update our best-ever variables
        if best_score is None or abs(worst_height_diff) < best_score:
            best_score = abs(worst_height_diff)
            best_partitions = partitions
            no_improvements_count = 0
        else:
            no_improvements_count += 1
        #decide if we're done: if all our partition heights are ideal, or if
        #we haven't seen improvement in >5 iterations, or we've tried 100
        #different partitionings
        #the criteria to exit are important for getting a good result with
        #complex data, and changing them is a good way to experiment with getting
        #improved results
        if worst_height_diff == 0 or no_improvements_count > 5 or count > 100:
            return best_partitions
        count += 1
        #adjust the partitioning of the worst partition to move it closer to the
        #ideal size. the overall goal is to take the worst partition and adjust
        #its size to try and make its height closer to the ideal. generally, if
        #the worst partition is too big, we want to shrink the worst partition
        #by moving one of its ends into the smaller of the two neighboring
        #partitions. if the worst partition is too small, we want to grow the
        #partition by expanding the partition towards the larger of the two
        #neighboring partitions
        if worst_partition_index == 0:   #the worst partition is the first one
            if worst_height_diff < 0: partition_between[0] -= 1   #partition too big, so make it smaller
            else: partition_between[0] += 1   #partition too small, so make it bigger
        elif worst_partition_index == len(partitions)-1: #the worst partition is the last one
            if worst_height_diff < 0: partition_between[-1] += 1   #partition too small, so make it bigger
            else: partition_between[-1] -= 1   #partition too big, so make it smaller
        else:   #the worst partition is in the middle somewhere
            left_bound = worst_partition_index - 1   #the divider before the partition
            right_bound = worst_partition_index   #the divider after the partition
            if worst_height_diff < 0:   #partition too big, so make it smaller
                if sum(partitions[worst_partition_index-1]) > sum(partitions[worst_partition_index+1]):   #the partition on the left is bigger than the one on the right, so make the one on the right bigger
                    partition_between[right_bound] -= 1
                else:   #the partition on the left is smaller than the one on the right, so make the one on the left bigger
                    partition_between[left_bound] += 1
            else:   #partition too small, make it bigger
                if sum(partitions[worst_partition_index-1]) > sum(partitions[worst_partition_index+1]): #the partition on the left is bigger than the one on the right, so make the one on the left smaller
                    partition_between[left_bound] -= 1
                else:   #the partition on the left is smaller than the one on the right, so make the one on the right smaller
                    partition_between[right_bound] += 1

def print_best_partition(a, k):
    #simple function to partition a list and print info
    print '    Partitioning {0} into {1} partitions'.format(a, k)
    p = partition_list(a, k)
    print '    The best partitioning is {0}\n    With heights {1}\n'.format(p, map(sum, p))

#tests
a = [1, 6, 2, 3, 4, 1, 7, 6, 4]
print_best_partition(a, 1)
print_best_partition(a, 2) 
print_best_partition(a, 3)
print_best_partition(a, 4)
print_best_partition(a, 5)

b = [1, 10, 10, 1]
print_best_partition(b, 2)

import random
c = [random.randint(0,20) for x in range(100)]
print_best_partition(c, 10)

d = [95, 15, 75, 25, 85, 5]
print_best_partition(d, 3)

关于python - 将数字列表拆分为 n 个 block ,使这些 block 具有(接近)相等的总和并保持原始顺序,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56086075/

相关文章:

python - 在 LinearSVC 的 scikit 中计算每个样本 x 的概率估计 P(y|x)

Python:Matplotlib 补丁和等高线图

python - Mac OS Pygame 使用已弃用的函数 CGSFlushWindow

c++ - 使用 glFrustum 创建拼接场景

sql - 使用 CURRENT_TIMESTAMP 查询时间戳分区表的效率

python - 如何解析远程文档?

algorithm - 特殊条件下数组中的最大和

algorithm - 用固定大小的方 block 平铺矩形

database - PostgreSQL多层分区

linux - 如何在 CentOs 中编辑 initramfs 以在引导后添加新分区