c - 在 C 中调整现有的 GOST 代码以散列文件

标签 c algorithm hash cryptography

我正在尝试使用 C 手动编写 GOST 哈希函数。我发现了 Markku-Juhani Saarinen(来自 link)的以下代码。

/*
 *  gosthash.c 
 *  21 Apr 1998  Markku-Juhani Saarinen <mjos@ssh.fi>
 * 
 *  GOST R 34.11-94, Russian Standard Hash Function
 *
 *  Copyright (c) 1998 SSH Communications Security, Finland
 *  All rights reserved.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gosthash.h"

/* lookup tables : each of these has two rotated 4-bit S-Boxes */

unsigned long gost_sbox_1[256];
unsigned long gost_sbox_2[256];
unsigned long gost_sbox_3[256];
unsigned long gost_sbox_4[256];

/* initialize the lookup tables */

void gosthash_init()
{
  int a, b, i;
  unsigned long ax, bx, cx, dx;

  /* 4-bit S-Boxes */ 

  unsigned long sbox[8][16] =
    {
    {  4, 10,  9,  2, 13,  8,  0, 14,  6, 11,  1, 12,  7, 15,  5,  3 },
    { 14, 11,  4, 12,  6, 13, 15, 10,  2,  3,  8,  1,  0,  7,  5,  9 },
    {  5,  8,  1, 13, 10,  3,  4,  2, 14, 15, 12,  7,  6,  0,  9, 11 },
    {  7, 13, 10,  1,  0,  8,  9, 15, 14,  4,  6, 12, 11,  2,  5,  3 },
    {  6, 12,  7,  1,  5, 15, 13,  8,  4, 10,  9, 14,  0,  3, 11,  2 },
    {  4, 11, 10,  0,  7,  2,  1, 13,  3,  6,  8,  5,  9, 12, 15, 14 },
    { 13, 11,  4,  1,  3, 15,  5,  9,  0, 10, 14,  7,  6,  8,  2, 12 },
    {  1, 15, 13,  0,  5,  7, 10,  4,  9,  2,  3, 14,  6, 11,  8, 12 }  
    };

  /* s-box precomputation */

  i = 0;
  for (a = 0; a < 16; a++)
    {
      ax = sbox[1][a] << 15;      
      bx = sbox[3][a] << 23;
      cx = sbox[5][a];        
      cx = (cx >> 1) | (cx << 31);
      dx = sbox[7][a] << 7;

      for (b = 0; b < 16; b++)
    {
      gost_sbox_1[i] = ax | (sbox[0][b] << 11);       
      gost_sbox_2[i] = bx | (sbox[2][b] << 19);
      gost_sbox_3[i] = cx | (sbox[4][b] << 27);   
      gost_sbox_4[i++] = dx | (sbox[6][b] << 3);
    }
    }
}

/*
 *  A macro that performs a full encryption round of GOST 28147-89.
 *  Temporary variable t assumed and variables r and l for left and right
 *  blocks
 */ 

#define GOST_ENCRYPT_ROUND(k1, k2) \
t = (k1) + r; \
l ^= gost_sbox_1[t & 0xff] ^ gost_sbox_2[(t >> 8) & 0xff] ^ \
gost_sbox_3[(t >> 16) & 0xff] ^ gost_sbox_4[t >> 24]; \
t = (k2) + l; \
r ^= gost_sbox_1[t & 0xff] ^ gost_sbox_2[(t >> 8) & 0xff] ^ \
gost_sbox_3[(t >> 16) & 0xff] ^ gost_sbox_4[t >> 24]; \

/* encrypt a block with the given key */

#define GOST_ENCRYPT(key) \
GOST_ENCRYPT_ROUND(key[0], key[1]) \
GOST_ENCRYPT_ROUND(key[2], key[3]) \
GOST_ENCRYPT_ROUND(key[4], key[5]) \
GOST_ENCRYPT_ROUND(key[6], key[7]) \
GOST_ENCRYPT_ROUND(key[0], key[1]) \
GOST_ENCRYPT_ROUND(key[2], key[3]) \
GOST_ENCRYPT_ROUND(key[4], key[5]) \
GOST_ENCRYPT_ROUND(key[6], key[7]) \
GOST_ENCRYPT_ROUND(key[0], key[1]) \
GOST_ENCRYPT_ROUND(key[2], key[3]) \
GOST_ENCRYPT_ROUND(key[4], key[5]) \
GOST_ENCRYPT_ROUND(key[6], key[7]) \
GOST_ENCRYPT_ROUND(key[7], key[6]) \
GOST_ENCRYPT_ROUND(key[5], key[4]) \
GOST_ENCRYPT_ROUND(key[3], key[2]) \
GOST_ENCRYPT_ROUND(key[1], key[0]) \
t = r; \
r = l; \
l = t;

/* 
 *  "chi" compression function. the result is stored over h
 */

void gosthash_compress(unsigned long *h, unsigned long *m)
{
  int i;
  unsigned long l, r, t, key[8], u[8], v[8], w[8], s[8];

  memcpy(u, h, sizeof(u));
  memcpy(v, m, sizeof(u));

  for (i = 0; i < 8; i += 2)
    {        
      w[0] = u[0] ^ v[0];          /* w = u xor v */
      w[1] = u[1] ^ v[1];
      w[2] = u[2] ^ v[2];
      w[3] = u[3] ^ v[3];
      w[4] = u[4] ^ v[4];
      w[5] = u[5] ^ v[5];
      w[6] = u[6] ^ v[6];
      w[7] = u[7] ^ v[7];      

      /* P-Transformation */

      key[0] = (w[0]  & 0x000000ff) | ((w[2] & 0x000000ff) << 8) |
    ((w[4] & 0x000000ff) << 16) | ((w[6] & 0x000000ff) << 24);
      key[1] = ((w[0] & 0x0000ff00) >> 8)  | (w[2]  & 0x0000ff00) |
    ((w[4] & 0x0000ff00) << 8) | ((w[6] & 0x0000ff00) << 16);
      key[2] = ((w[0] & 0x00ff0000) >> 16) | ((w[2] & 0x00ff0000) >> 8) |
    (w[4] & 0x00ff0000) | ((w[6] & 0x00ff0000) << 8);
      key[3] = ((w[0] & 0xff000000) >> 24) | ((w[2] & 0xff000000) >> 16) |
    ((w[4] & 0xff000000) >> 8) | (w[6] & 0xff000000);  
      key[4] = (w[1] & 0x000000ff) | ((w[3] & 0x000000ff) << 8) |
    ((w[5] & 0x000000ff) << 16) | ((w[7] & 0x000000ff) << 24);
      key[5] = ((w[1] & 0x0000ff00) >> 8) | (w[3]  & 0x0000ff00) |
    ((w[5] & 0x0000ff00) << 8) | ((w[7] & 0x0000ff00) << 16);
      key[6] = ((w[1] & 0x00ff0000) >> 16) | ((w[3] & 0x00ff0000) >> 8) |
    (w[5] & 0x00ff0000) | ((w[7] & 0x00ff0000) << 8);
      key[7] = ((w[1] & 0xff000000) >> 24) | ((w[3] & 0xff000000) >> 16) |
    ((w[5] & 0xff000000) >> 8) | (w[7] & 0xff000000);  

      r = h[i];                /* encriphering transformation */
      l = h[i + 1];      
      GOST_ENCRYPT(key);

      s[i] = r;
      s[i + 1] = l;

      if (i == 6)
    break;

      l = u[0] ^ u[2];             /* U = A(U) */
      r = u[1] ^ u[3];
      u[0] = u[2];
      u[1] = u[3];
      u[2] = u[4];
      u[3] = u[5];
      u[4] = u[6];
      u[5] = u[7];
      u[6] = l;
      u[7] = r;

      if (i == 2)              /* Constant C_3 */
    {
      u[0] ^= 0xff00ff00; 
      u[1] ^= 0xff00ff00; 
      u[2] ^= 0x00ff00ff;
      u[3] ^= 0x00ff00ff;
      u[4] ^= 0x00ffff00;
      u[5] ^= 0xff0000ff;
      u[6] ^= 0x000000ff;
      u[7] ^= 0xff00ffff;       
    }

      l = v[0];                /* V = A(A(V)) */
      r = v[2];
      v[0] = v[4];
      v[2] = v[6];
      v[4] = l ^ r;
      v[6] = v[0] ^ r;
      l = v[1];
      r = v[3];
      v[1] = v[5];
      v[3] = v[7];
      v[5] = l ^ r;
      v[7] = v[1] ^ r;
    }

  /* 12 rounds of the LFSR (computed from a product matrix) and xor in M */

  u[0] = m[0] ^ s[6];
  u[1] = m[1] ^ s[7];
  u[2] = m[2] ^ (s[0] << 16) ^ (s[0] >> 16) ^ (s[0] & 0xffff) ^ 
    (s[1] & 0xffff) ^ (s[1] >> 16) ^ (s[2] << 16) ^ s[6] ^ (s[6] << 16) ^
    (s[7] & 0xffff0000) ^ (s[7] >> 16);
  u[3] = m[3] ^ (s[0] & 0xffff) ^ (s[0] << 16) ^ (s[1] & 0xffff) ^ 
    (s[1] << 16) ^ (s[1] >> 16) ^ (s[2] << 16) ^ (s[2] >> 16) ^
    (s[3] << 16) ^ s[6] ^ (s[6] << 16) ^ (s[6] >> 16) ^ (s[7] & 0xffff) ^ 
    (s[7] << 16) ^ (s[7] >> 16);
  u[4] = m[4] ^ 
    (s[0] & 0xffff0000) ^ (s[0] << 16) ^ (s[0] >> 16) ^ 
    (s[1] & 0xffff0000) ^ (s[1] >> 16) ^ (s[2] << 16) ^ (s[2] >> 16) ^
    (s[3] << 16) ^ (s[3] >> 16) ^ (s[4] << 16) ^ (s[6] << 16) ^ 
    (s[6] >> 16) ^(s[7] & 0xffff) ^ (s[7] << 16) ^ (s[7] >> 16);
  u[5] = m[5] ^ (s[0] << 16) ^ (s[0] >> 16) ^ (s[0] & 0xffff0000) ^
    (s[1] & 0xffff) ^ s[2] ^ (s[2] >> 16) ^ (s[3] << 16) ^ (s[3] >> 16) ^
    (s[4] << 16) ^ (s[4] >> 16) ^ (s[5] << 16) ^  (s[6] << 16) ^ 
    (s[6] >> 16) ^ (s[7] & 0xffff0000) ^ (s[7] << 16) ^ (s[7] >> 16);
  u[6] = m[6] ^ s[0] ^ (s[1] >> 16) ^ (s[2] << 16) ^ s[3] ^ (s[3] >> 16) ^
    (s[4] << 16) ^ (s[4] >> 16) ^ (s[5] << 16) ^ (s[5] >> 16) ^ s[6] ^ 
    (s[6] << 16) ^ (s[6] >> 16) ^ (s[7] << 16);
  u[7] = m[7] ^ (s[0] & 0xffff0000) ^ (s[0] << 16) ^ (s[1] & 0xffff) ^ 
    (s[1] << 16) ^ (s[2] >> 16) ^ (s[3] << 16) ^ s[4] ^ (s[4] >> 16) ^
    (s[5] << 16) ^ (s[5] >> 16) ^ (s[6] >> 16) ^ (s[7] & 0xffff) ^ 
    (s[7] << 16) ^ (s[7] >> 16);

  /* 16 * 1 round of the LFSR and xor in H */

  v[0] = h[0] ^ (u[1] << 16) ^ (u[0] >> 16);
  v[1] = h[1] ^ (u[2] << 16) ^ (u[1] >> 16);
  v[2] = h[2] ^ (u[3] << 16) ^ (u[2] >> 16);
  v[3] = h[3] ^ (u[4] << 16) ^ (u[3] >> 16);
  v[4] = h[4] ^ (u[5] << 16) ^ (u[4] >> 16);
  v[5] = h[5] ^ (u[6] << 16) ^ (u[5] >> 16);
  v[6] = h[6] ^ (u[7] << 16) ^ (u[6] >> 16);
  v[7] = h[7] ^ (u[0] & 0xffff0000) ^ (u[0] << 16) ^ (u[7] >> 16) ^
    (u[1] & 0xffff0000) ^ (u[1] << 16) ^ (u[6] << 16) ^ (u[7] & 0xffff0000);

  /* 61 rounds of LFSR, mixing up h (computed from a product matrix) */

  h[0] = (v[0] & 0xffff0000) ^ (v[0] << 16) ^ (v[0] >> 16) ^ (v[1] >> 16) ^ 
    (v[1] & 0xffff0000) ^ (v[2] << 16) ^ (v[3] >> 16) ^ (v[4] << 16) ^
    (v[5] >> 16) ^ v[5] ^ (v[6] >> 16) ^ (v[7] << 16) ^ (v[7] >> 16) ^ 
    (v[7] & 0xffff);
  h[1] = (v[0] << 16) ^ (v[0] >> 16) ^ (v[0] & 0xffff0000) ^ (v[1] & 0xffff) ^ 
    v[2] ^ (v[2] >> 16) ^ (v[3] << 16) ^ (v[4] >> 16) ^ (v[5] << 16) ^ 
    (v[6] << 16) ^ v[6] ^ (v[7] & 0xffff0000) ^ (v[7] >> 16);
  h[2] = (v[0] & 0xffff) ^ (v[0] << 16) ^ (v[1] << 16) ^ (v[1] >> 16) ^ 
    (v[1] & 0xffff0000) ^ (v[2] << 16) ^ (v[3] >> 16) ^ v[3] ^ (v[4] << 16) ^
    (v[5] >> 16) ^ v[6] ^ (v[6] >> 16) ^ (v[7] & 0xffff) ^ (v[7] << 16) ^
    (v[7] >> 16);
  h[3] = (v[0] << 16) ^ (v[0] >> 16) ^ (v[0] & 0xffff0000) ^ 
    (v[1] & 0xffff0000) ^ (v[1] >> 16) ^ (v[2] << 16) ^ (v[2] >> 16) ^ v[2] ^ 
    (v[3] << 16) ^ (v[4] >> 16) ^ v[4] ^ (v[5] << 16) ^ (v[6] << 16) ^ 
    (v[7] & 0xffff) ^ (v[7] >> 16);
  h[4] = (v[0] >> 16) ^ (v[1] << 16) ^ v[1] ^ (v[2] >> 16) ^ v[2] ^ 
    (v[3] << 16) ^ (v[3] >> 16) ^ v[3] ^ (v[4] << 16) ^ (v[5] >> 16) ^ 
    v[5] ^ (v[6] << 16) ^ (v[6] >> 16) ^ (v[7] << 16);
  h[5] = (v[0] << 16) ^ (v[0] & 0xffff0000) ^ (v[1] << 16) ^ (v[1] >> 16) ^ 
    (v[1] & 0xffff0000) ^ (v[2] << 16) ^ v[2] ^ (v[3] >> 16) ^ v[3] ^ 
    (v[4] << 16) ^ (v[4] >> 16) ^ v[4] ^ (v[5] << 16) ^ (v[6] << 16) ^
    (v[6] >> 16) ^ v[6] ^ (v[7] << 16) ^ (v[7] >> 16) ^ (v[7] & 0xffff0000);
  h[6] = v[0] ^ v[2] ^ (v[2] >> 16) ^ v[3] ^ (v[3] << 16) ^ v[4] ^ 
    (v[4] >> 16) ^ (v[5] << 16) ^ (v[5] >> 16) ^ v[5] ^ (v[6] << 16) ^ 
    (v[6] >> 16) ^ v[6] ^ (v[7] << 16) ^ v[7];
  h[7] = v[0] ^ (v[0] >> 16) ^ (v[1] << 16) ^ (v[1] >> 16) ^ (v[2] << 16) ^
    (v[3] >> 16) ^ v[3] ^ (v[4] << 16) ^ v[4] ^ (v[5] >> 16) ^ v[5] ^
    (v[6] << 16) ^ (v[6] >> 16) ^ (v[7] << 16) ^ v[7];
}

/* Clear the state of the given context structure. */

void gosthash_reset(GostHashCtx *ctx)
{
  memset(ctx->sum, 0, 32);
  memset(ctx->hash, 0, 32);
  memset(ctx->len, 0, 32);
  memset(ctx->partial, 0, 32);
  ctx->partial_bytes = 0;  
}

/* Mix in a 32-byte chunk ("stage 3") */

void gosthash_bytes(GostHashCtx *ctx, const unsigned char *buf, size_t bits)
{
  int i, j;
  unsigned long a, b, c, m[8];

  /* convert bytes to a long words and compute the sum */

  j = 0;
  c = 0;
  for (i = 0; i < 8; i++)
    {
      a = ((unsigned long) buf[j]) | 
    (((unsigned long) buf[j + 1]) << 8) | 
    (((unsigned long) buf[j + 2]) << 16) | 
    (((unsigned long) buf[j + 3]) << 24);
      j += 4;
      m[i] = a;
      b = ctx->sum[i];
      c = a + c + ctx->sum[i];
      ctx->sum[i] = c;
      c = ((c < a) || (c < b)) ? 1 : 0;     
    }

  /* compress */

  gosthash_compress(ctx->hash, m);

  /* a 64-bit counter should be sufficient */

  ctx->len[0] += bits;
  if (ctx->len[0] < bits)
    ctx->len[1]++;  
}

/* Mix in len bytes of data for the given buffer. */

void gosthash_update(GostHashCtx *ctx, const unsigned char *buf, size_t len)
{
  size_t i, j;

  i = ctx->partial_bytes;
  j = 0;
  while (i < 32 && j < len)
    ctx->partial[i++] = buf[j++];

  if (i < 32)
    {
      ctx->partial_bytes = i;
      return;
    }  
  gosthash_bytes(ctx, ctx->partial, 256);

  while ((j + 32) < len)
    {
      gosthash_bytes(ctx, &buf[j], 256);
      j += 32;
    }

  i = 0;
  while (j < len)
    ctx->partial[i++] = buf[j++];
  ctx->partial_bytes = i;
}


/* Compute and save the 32-byte digest. */

void gosthash_final(GostHashCtx *ctx, unsigned char *digest)
{
  int i, j;
  unsigned long a;

  /* adjust and mix in the last chunk */

  if (ctx->partial_bytes > 0)
    {
      memset(&ctx->partial[ctx->partial_bytes], 0, 32 - ctx->partial_bytes);
      gosthash_bytes(ctx, ctx->partial, ctx->partial_bytes << 3);      
    }

  /* mix in the length and the sum */

  gosthash_compress(ctx->hash, ctx->len);  
  gosthash_compress(ctx->hash, ctx->sum);  

  /* convert the output to bytes */

  j = 0;
  for (i = 0; i < 8; i++)
    {
      a = ctx->hash[i];
      digest[j] = (unsigned char) a;
      digest[j + 1] = (unsigned char) (a >> 8);
      digest[j + 2] = (unsigned char) (a >> 16);
      digest[j + 3] = (unsigned char) (a >> 24);    
      j += 4;
    }  
}

但是,没有可用于编译可执行文件的ma​​in() 函数。我想要一个 main(int argc, char *argv[]) 类型的 main,用它来调用带有生成的可执行文件的文件并散列文件的内容。

我已经一遍又一遍地检查了代码,但我一直在调用代码的函数,我不知道如何继续。拜托,关于如何填充我的主要功能以运行此代码的任何想法?

编辑

我尝试了以下 main() 代码,但它似乎不起作用:

void main(int argc, char *argv[]){
    if (argc!=2) {
        fprintf(stderr, "Error: Provide name of one source file.\n");
        exit(EXIT_FAILURE);
    }

    char *clear_file = argv[1];
    const char *FILENAME_IN = clear_file;

    FILE *infile;
    infile = fopen(FILENAME_IN, "r");

    GostHashCtx *ctx = malloc(sizeof(GostHashCtx));
    unsigned char *digest, *buf;
    char c;

    if(infile == NULL){
        fprintf(stderr, "Error: Source file not found.\n");
        exit(EXIT_FAILURE);
    }

    gosthash_init();
    gosthash_reset(ctx); //printf("CTX.PB=%d\n\n",ctx->partial_bytes);

    int quit = 0;
    while (quit == 0) {
        int p = 0;
        buf = malloc(256);
        strcpy(buf, "");
        while(((c = fgetc(infile)) != EOF) && (p < 256)) {
            *(buf+p) = c;
            p++;
        }

        //*(buf+p) = '\0';
        if(c == EOF) quit = 1;

        gosthash_update(ctx, buf, 256);
        free(buf);
    }

    digest = malloc(256); 
    strcpy(digest, "");

    gosthash_final(ctx, digest);

    printf("%s\n", digest);

    free(ctx);
    free(digest);
}

为了验证输出,我使用在线工具快速将生成的字符串 digest 转换为 HEX,但对于 GOST 哈希的已知测试值,结果不正确。 请问,为什么会这样?

最佳答案

好的,所以首先您必须调用 gosthash_init 来填充查找表。然后,您可以根据需要分配尽可能多的 GostHashCtx 类型的上下文——在您的情况下,您可能只需要一个。您可以提前重置它以确保上下文填充零值。

现在您调用 gosthash_update 一次或多次来散列文件中的所有字节(当然是按顺序)。最后调用 gosthash_final 来创建散列。这些步骤执行实际的散列。

如果你想散列其他东西,首先调用 gosthash_reset,然后再次调用 gosthash_updategosthash_final

关于c - 在 C 中调整现有的 GOST 代码以散列文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31550616/

相关文章:

C 创建一个 Bignum 矩阵

c - 有关 C 语言文件和 I/O 系统调用的基础问题(在 Linux/UNIX 上)

python - 通过相等的第一个字段组合/分组/合并列表列表,在字符串中加入第二个字段并在其他字段中写入相同的数据

algorithm - 我应该使用什么算法来最大化生产计划中的资源利用率?

perl - 我需要重置 Perl 哈希索引吗?

c# - 是否可以将密码输入字符串确定为明文或散列?

c - C中的通用数据结构

c - 如何将指针指向数组的内容赋值?

performance - 快速轻量级图像比较度量算法

Perl:访问散列内的散列值