c++ - sparse_vector模板类:如何清理它?

标签 c++ templates vector sparse-matrix

我不确定这是否是个好问题-否则请关闭它。

我着手编写(以boost::coordinate_vector为起点)一个sparse_vector模板类,该模板类有效地实现了类似于 vector 的接口(interface),但是很稀疏。它实现了所有常用的 vector 运算以及在集合元素上进行迭代的快速稀疏迭代器。它还具有rotate的快速版本。我需要这个类,因为我有一个“一次写入多次读取”用例,并且使用了许多sparse_vectors

我没有编写模板类的经验,所以我知道有些事情我可以做得更好。我该如何提高这门课?

// sparse_vector is a sparse version of std::vector.  It stores index-value pairs, and a size, which
// represents the size of the sparse_vector.

#include <algorithm>
#include <ostream>
#include <iostream>
#include <vector>
#include <boost/iterator.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/iterator/reverse_iterator.hpp>
#include <boost/optional.hpp>
#include <glog/logging.h>

template<typename T>
class sparse_vector {
public:
    typedef T value_type;
    typedef T* pointer;
    typedef T& reference;
    typedef const T& const_reference;
    typedef size_t size_type;
private:
    struct ElementType {
        ElementType(size_type i, T const& t): index(i), value(t) {}
        ElementType(size_type i, T&& t): index(i), value(move(t)) {}
        ElementType(size_type i): index(i) {}  // allows lower_bound to work
        ElementType(ElementType const&) = default;
        size_type index;
        value_type value;
    };
    typedef std::vector<ElementType> array_type;
public:
    typedef typename array_type::difference_type difference_type;

private:
    typedef const T* const_pointer;
    typedef sparse_vector<T> self_type;
    typedef typename array_type::const_iterator const_subiterator_type;
    typedef typename array_type::iterator subiterator_type;

    struct IndexCompare {
        bool operator()(ElementType const& a, ElementType const& b) { return a.index < b.index; }
    };

public:
    // Construction and destruction
    inline sparse_vector(): size_(0), sorted_filled_(0), data_() {
            storage_invariants(); }
    explicit inline sparse_vector(size_type size): size_(size), sorted_filled_(0), data_() {
            storage_invariants(); }
    inline sparse_vector(const sparse_vector<T> &v):
        size_(v.size_), sorted_filled_(v.sorted_filled_), data_(v.data_) {
            storage_invariants(); }
    inline sparse_vector(sparse_vector<T>&& v):
        size_(v.size_), sorted_filled_(v.sorted_filled_), data_(move(v.data_)) {
            storage_invariants(); }
    sparse_vector(const optional<T> &o): size_(1), sorted_filled_(0) {
            if (o) {
                append_element(0, *o);
                sorted_filled_ = 1;
            }
            storage_invariants();
        }
    sparse_vector(const std::vector<T> &v):
        size_(v.size()), sorted_filled_(0) {
            data_.reserve(v.size());
            for (auto it = v.begin(); it != v.end(); ++it)
                append_element(it - v.begin(), *it);
            sorted_filled_ = v.size();
            storage_invariants();
        }
    sparse_vector(const sparse_vector<optional<T>> &sv):
        size_(sv.size()), sorted_filled_(0) {
            for (auto it = sv.sparse_begin(); it != sv.sparse_end(); ++it)
                if (*it)
                    append_element(it.index(), **it);
            sorted_filled_ = data_.size();
            storage_invariants();
        }
    sparse_vector(size_type size, vector<pair<size_type, T>> init_list):
        size_(size), sorted_filled_(0) {
            for (auto it = init_list.begin(); it != init_list.end(); ++it)
                append_element(it->first, it->second);
            // require that the list be sorted?
            // sorted_filled_ = data_.size();
            storage_invariants();
        }
    /*template<class AE>
        inline sparse_vector(const sparse_vector<AE> &ae):
            size_(ae().size()), sorted_filled_(ae.nnz()), data_() {
                storage_invariants();
                for (auto it = ae.sparse_begin(); it != ae.sparse_end(); ++it) {
                    (*this)[it.index()] = static_cast<T>(*it);
                }
            }*/

    // Conversion operators
    // Copy sparse_vector to a vector filling in uninitialized elements with T()
    operator std::vector<T>() {
        std::vector<T> retval(size_);
        for (auto it = data_.begin(); it != data_.end(); ++it)
            retval[it.index()] = *it;
        return retval; 
    }
    // Copy sparse_vector to a vector filling in uninitialized elements with a default value.
    void CopyToVector(std::vector<T>* v, T const& default_value = T()) {
        size_type last_index = 0;
        for (auto it = sparse_begin(); it != sparse_end(); ++it) {
            for (size_type i = last_index; i < it.index(); ++i) {
                (*v)[i] = default_value;
            }
            (*v)[it.index()] = *it;
            last_index = it.index() + 1;
        }
    }

    // Accessors
    inline size_type size() const {
        return size_;
    }
    inline size_type nnz_capacity() const {
        return data_.capacity();
    }
    inline size_type nnz() const {
        return data_.size();
    }

    // Resizing
    inline void resize(size_type size, bool preserve = true) {
        if (preserve) {
            sort();    // remove duplicate elements.
            subiterator_type it(lower_bound(data_.begin(), data_.end(), size, IndexCompare()));
            data_.erase(it, data_.end());
        } else {
            data_.clear();
        }
        size_ = size;
        sorted_filled_ = nnz();
        storage_invariants();
    }

    // Reserving
    inline void reserve(size_type non_zeros, bool preserve = true) {
        if (preserve)
            sort();    // remove duplicate elements.
        else
            data_.clear();
        data_.reserve(non_zeros);
        sorted_filled_ = nnz();
        storage_invariants();
    }

    // Element support
    // find_element returns a pointer to element i or NULL -- it never creates an element
    inline pointer find_element(size_type i) {
        return const_cast<pointer> (const_cast<const self_type&>(*this).find_element(i)); }
    inline const_pointer find_element(size_type i) const {
        sort();
        const_subiterator_type it(lower_bound(data_.begin(), data_.end(), i, IndexCompare()));
        if (it == data_.end() || it->index != i)
            return NULL;
        return &it->value;
    }
    // find_element_optional returns a boost::optional<T>
    inline boost::optional<value_type> find_element_optional(size_type i) const {
        CHECK_LT(i, size_);
        sort();
        const_subiterator_type it(lower_bound(data_.begin(), data_.end(), i, IndexCompare()));
        if (it == data_.end() || it->index != i)
            return boost::optional<value_type>();
        return boost::optional<value_type>(it->value);
    }

    // Element access
    // operator[] returns a reference to element i -- the const version returns a reference to
    // a zero_ element if it doesn't exist; the non-const version creates it in that case.
    inline const_reference operator[] (size_type i) const {
        CHECK_LT(i, size_);
        sort();
        const_subiterator_type it(lower_bound(data_.begin(), data_.end(), i, IndexCompare()));
        if (it == data_.end() || it->index != i)
            return zero_;
        return it->value;
    }
    inline reference operator[] (size_type i) {
        CHECK_LT(i, size_);
        sort();
        subiterator_type it(lower_bound(data_.begin(), data_.end(), i, IndexCompare()));
        if (it == data_.end() || it->index != i)
            return insert_element(i, value_type/*zero*/());
        else
            return it->value;
    }

    // Element assignment
    inline void append_element(size_type i, const_reference t) {
        data_.emplace_back(i, t);
        storage_invariants();
    }
    inline void append_element(size_type i, T&& t) {
        data_.emplace_back(i, move(t));
        storage_invariants();
    }
    inline void sorted_append_element(size_type i, const_reference t) {
        // must maintain sort order
        CHECK(sorted());
        if (data_.size() > 0)
            CHECK_LT(data_.back().index, i);
        data_.emplace_back(i, t);
        sorted_filled_ = data_.size();
        storage_invariants();
    }
    /* This function is probably not useful.
     * inline void sparse_pop_back() {
        // ISSUE invariants could be simpilfied if sorted required as precondition
        CHECK_GT(data_.size(), 0);
        data_.pop_back();
        sorted_filled_ = (std::min)(sorted_filled_, data_.size());
        storage_invariants();
    }*/
    inline reference insert_element(size_type i, const_reference t) {
        DCHECK(find_element(i) == NULL);  // duplicate element
        append_element(i, t);
        return data_.back().value;
    }

    // Element clearing
    // TODO(neil): consider replacing size_type functions with iterator functions
    // replaces elements in the range [i, i] with "zero" (by erasing them from the map)
    inline void clear_element(size_type i) {
        sort();
        subiterator_type it(lower_bound(data_.begin(), data_.end(), i, IndexCompare()));
        if (it == data_.end() || it->index != i)
            return;
        data_.erase(it);
        --sorted_filled_;
        storage_invariants();
    }
    // replaces elements in the range [first, last) with "zero" (by erasing them from the map)
    inline void clear_elements(size_type first, size_type last) {
        CHECK_LE(first, last);
        sort();
        subiterator_type it_first(lower_bound(data_.begin(), data_.end(), first, IndexCompare()));
        subiterator_type it_last(lower_bound(data_.begin(), data_.end(), last, IndexCompare()));
        sorted_filled_ -= it_last - it_first;
        data_.erase(it_first, it_last);
        storage_invariants();
    }

    // Zeroing
    inline void clear() { data_.clear(); sorted_filled_ = 0; storage_invariants(); }

    // Comparison
    inline bool operator==(const sparse_vector &v) const {
        if (this == &v)
            return true;
        if (size_ != v.size_)
            return false;
        auto it_this = sparse_begin();
        for (auto it = v.sparse_begin(); it != v.sparse_end(); ++it) {
            if (it_this == sparse_end()
                || it_this.index() != it.index()
                || *it_this != *it)
                return false;
            ++it_this;
        }
        return true;
    }

    // Assignment
    inline sparse_vector& operator=(const sparse_vector &v) {
        if (this != &v) {
            size_ = v.size_;
            sorted_filled_ = v.sorted_filled_;
            data_ = v.data_;
        }
        storage_invariants();
        return *this;
    }
    inline sparse_vector &assign_temporary(sparse_vector &v) {
        swap(v);
        return *this;
    }
    template<class AE>
        inline sparse_vector& operator=(const sparse_vector<AE> &ae) {
            self_type temporary(ae);
            return assign_temporary(temporary);
        }

    // Swapping
    inline void swap(sparse_vector &v) {
        if (this != &v) {
            std::swap(size_, v.size_);
            std::swap(sorted_filled_, v.sorted_filled_);
            data_.swap(v.data_);
        }
        storage_invariants();
    }
    inline friend void swap(sparse_vector &v1, sparse_vector &v2) { v1.swap(v2); }

    // Sorting and summation of duplicates
    inline bool sorted() const { return sorted_filled_ == data_.size(); }
    inline void sort() const {
        if (!sorted() && data_.size() > 0) {
            // sort new elements and merge
            std::sort(data_.begin() + sorted_filled_, data_.end(), IndexCompare());
            std::inplace_merge(data_.begin(), data_.begin() + sorted_filled_, data_.end(),
                               IndexCompare());

            // check for duplicates
            size_type filled = 0;
            for(size_type i = 1; i < data_.size(); ++i) {
                if (data_[filled].index != data_[i].index) {
                    ++filled;
                    if (filled != i) {
                        data_[filled] = data_[i];
                    }
                } else {
                    CHECK(false);  // duplicates
                    // value_data_[filled] += value_data_[i];
                }
            }
            ++filled;
            sorted_filled_ = filled;
            data_.erase(data_.begin() + filled, data_.end());
            storage_invariants();
        }
    }

    // Back element insertion and erasure
    inline void push_back(const_reference t) {
        CHECK(sorted());
        data_.emplace_back(size(), t);
        if (sorted_filled_ == data_.size())
            ++sorted_filled_;
        ++size_;
        storage_invariants();
    }
    inline void pop_back() {
        CHECK_GT(size_, 0);
        clear_element(size_ - 1);
        if (sorted_filled_ == size_)
            --sorted_filled_;
        --size_;
        storage_invariants();
    }

    // Iterator types
private:
    template<typename base_type, typename iterator_value_type>
        class sparse_iterator_private
            : public boost::iterator_adaptor<
              sparse_iterator_private<base_type, iterator_value_type>,  // Derived
              base_type,                                                // Base
              iterator_value_type,                                      // Value
              boost::random_access_traversal_tag                        // CategoryOrTraversal
              > {
        private:
            struct enabler {};  // a private type avoids misuse

        public:
            sparse_iterator_private()
                : sparse_iterator_private<base_type, iterator_value_type>::iterator_adaptor_() {}

            explicit sparse_iterator_private(base_type&& p)
                : sparse_iterator_private<base_type, iterator_value_type>::iterator_adaptor_(p) {}

            size_type index() const { return this->base()->index; }
            iterator_value_type& value() const { return this->base()->value; }

        private:
            friend class boost::iterator_core_access;

            iterator_value_type& dereference() const { return this->base()->value; }
        };

    template<typename container_type, typename iterator_value_type>
        class iterator_private
        : public boost::iterator_facade<
          iterator_private<container_type, iterator_value_type>,    // Derived
          iterator_value_type,                                      // Value
          boost::random_access_traversal_tag,                       // CategoryOrTraversal
          iterator_value_type&,                                     // Reference
          difference_type                                           // Difference
          > {
          private:
              struct enabler {};  // a private type avoids misuse

          public:
              iterator_private(): container_(NULL), index_(0) {}

              iterator_private(container_type* container, size_type index)
                  : container_(container), index_(index) {}

              iterator_private(iterator_private const& other)
                  : container_(other.container_), index_(other.index_) {}

              iterator_private& operator=(iterator_private const& other) {
                  container_ = other.container_;
                  index_ = other.index_;
              }

              container_type& container() const { return *container_; }
              size_type index() const { return index_; }
              iterator_value_type& value() const { return dereference(); }
              /* TODO(neil): how do you make this work?
                 template<typename U>
                 sparse_iterator_private<U> subsequent_sparse_iterator() {
                 return sparse_iterator_private<T>(lower_bound(container_.data_.begin(),
                 container_.data_.end(),
                 index_, IndexCompare()));
                 }
                 */

          private:
              friend class boost::iterator_core_access;
              iterator_value_type& dereference() const { return (*container_)[index_]; }
              bool equal(iterator_private<container_type, iterator_value_type> const& other) const {
                  return index_ == other.index_ && container_ == other.container_; }
              void increment() { ++index_; }
              void decrement() { --index_; }
              void advance(int n) { index_ += n; }
              difference_type distance_to(iterator_private<container_type,
                                          iterator_value_type> const& other) {
                  return index_ - other.index_; }

              container_type*       container_;
              size_type             index_;
          };

public:
    typedef sparse_iterator_private<typename array_type::iterator, value_type> sparse_iterator;
    typedef sparse_iterator_private<
        typename array_type::const_iterator, const value_type> const_sparse_iterator;
    typedef iterator_private<sparse_vector, value_type> iterator;
    typedef iterator_private<const sparse_vector, const value_type> const_iterator;
    typedef boost::reverse_iterator<sparse_iterator> reverse_sparse_iterator;
    typedef boost::reverse_iterator<const_sparse_iterator> const_reverse_sparse_iterator;
    typedef boost::reverse_iterator<iterator> reverse_iterator;
    typedef boost::reverse_iterator<const_iterator> const_reverse_iterator;

    // Element lookup
    // inline This function seems to be big. So we do not let the compiler inline it.    
    sparse_iterator sparse_find(size_type i) {
        sort();
        return sparse_iterator(lower_bound(data_.begin(), data_.end(), i, IndexCompare()));
    }
    // inline This function seems to be big. So we do not let the compiler inline it.    
    const_sparse_iterator sparse_find(size_type i) const {
        sort();
        return const_sparse_iterator(lower_bound(data_.begin(), data_.end(), i, IndexCompare()));
    }
    // the nth non-zero element
    const_sparse_iterator nth_nonzero(size_type i) const {
        CHECK_LE(data_.size(), i);
        sort();
        return const_sparse_iterator(data_.begin() + i);
    }

    // Forward iterators
    inline sparse_iterator sparse_begin() { return sparse_find(0); }
    inline sparse_iterator sparse_end() { return sparse_find(size_); }
    inline const_sparse_iterator sparse_begin() const { return sparse_find(0); }
    inline const_sparse_iterator sparse_end() const { return sparse_find(size_); }
    inline iterator begin() { return iterator(this, 0); }
    inline iterator end() { return iterator(this, size()); }
    inline const_iterator begin() const { return const_iterator(this, 0); }
    inline const_iterator end() const { return const_iterator(this, size()); }

    // Reverse iterators
    inline reverse_sparse_iterator sparse_rbegin() {
        return reverse_sparse_iterator(sparse_end()); }
    inline reverse_sparse_iterator sparse_rend() {
        return reverse_sparse_iterator(sparse_begin()); }
    inline const_reverse_sparse_iterator sparse_rbegin() const {
        return const_reverse_sparse_iterator(sparse_end()); }
    inline const_reverse_sparse_iterator sparse_rend() const {
        return const_reverse_sparse_iterator(sparse_begin()); }
    inline reverse_iterator rbegin() {
        return reverse_iterator(end()); }
    inline reverse_iterator rend() {
        return reverse_iterator(begin()); }
    inline const_reverse_iterator rbegin() const {
        return const_reverse_iterator(end()); }
    inline const_reverse_iterator rend() const {
        return const_reverse_iterator(begin()); }

    // Mutating algorithms
    // like vector::erase (erases the elements from the container and shrinks the container)
    inline void erase(iterator const& first, iterator const& last) {
        clear_elements(first.index(), last.index());
        CHECK(sorted());
        subiterator_type it_first(lower_bound(data_.begin(), data_.end(),
                                              first.index(), IndexCompare()));
        size_t n = last.index() - first.index();
        for (auto it = it_first; it != data_.end(); ++it)
            it->index -= n;
        size_ -= n;
    }

    // like vector::insert (insert elements into the container and causes the container to grow)
    inline void insert(iterator const& index, size_type n) {
        sort();
        subiterator_type it_first(lower_bound(data_.begin(), data_.end(),
                                              index.index(), IndexCompare()));
        for (auto it = it_first; it != data_.end(); ++it)
            it->index += n;
        size_ += n;
    }

    // Removes all "zero" elements
    void remove_zeros() {
        size_type filled = 0;
        for(size_type i = 0; i < data_.size(); ++i) {
            if (i == sorted_filled_) {
                // Once we've processed sorted_filled_ items, we know that whatever we've filled so
                // far is sorted.
                CHECK_LE(filled, sorted_filled_);
                // Since sorted_filled_ only shrinks here, and i only grows, we won't enter this
                // condition twice.
                sorted_filled_ = filled;
            }
            if (data_[i].value != value_type/*zero*/()) {
                if (filled != i) {
                    data_[filled] = data_[i];
                }
                ++filled;
            }
        }
        data_.erase(data_.begin() + filled, data_.end());
        storage_invariants();
    }

    void rotate(size_type first, size_type middle, size_type last) {
        CHECK_LT(first, middle);
        CHECK_LT(middle, last);
        sort();
        subiterator_type it_first(lower_bound(data_.begin(), data_.end(),
                                              first, IndexCompare()));
        subiterator_type it_middle(lower_bound(data_.begin(), data_.end(),
                                               middle, IndexCompare()));
        subiterator_type it_last(lower_bound(data_.begin(), data_.end(),
                                             last, IndexCompare()));

        for (auto it = it_first; it != it_middle; ++it)
            it->index += last - middle;
        for (auto it = it_middle; it != it_last; ++it)
            it->index -= middle - first;
        std::rotate(it_first, it_middle, it_last);
        // array remains sorted
    }

    sparse_vector<value_type> concatenate(sparse_vector<value_type> const& other) const {
        sparse_vector<value_type> retval(size() + other.size());
        for (auto it = sparse_begin(); it != sparse_end(); ++it) {
            retval[it.index()] = *it;
        }
        for (auto it = other.sparse_begin(); it != other.sparse_end(); ++it) {
            retval[it.index() + size()] = *it;
        }
        return retval;
    }

private:
    void storage_invariants() const {
        CHECK_LE(sorted_filled_, data_.size());
        if (sorted())
            CHECK_EQ(sorted_filled_, data_.size());
        else
            CHECK_LT(sorted_filled_, data_.size());
        if (!data_.empty())
            CHECK_LT(data_.back().index, size_);
        for (size_type i = 1; i < sorted_filled_; ++i)
            CHECK_GT(data_[i].index, data_[i - 1].index);
    }

    size_type                                   size_;
    mutable typename array_type::size_type      sorted_filled_; 
    mutable array_type                          data_;

    static const value_type                     zero_;
};

template<typename T>
const typename sparse_vector<T>::value_type sparse_vector<T>::zero_ = T();

template<typename T>
ostream& operator<<(ostream& os, const sparse_vector<T>& v) {
    os << "[" << v.size() << ": ";
    for (auto it = v.sparse_begin(); it != v.sparse_end(); ++it) {
        os << "(" << it.index() << ": " << it.value() << ") ";
    }
    return os << "]";
}

最佳答案

对于没有编写类模板经验的人,您已经创建了相当复杂的东西。不幸的是,我目前无法进行深入分析:给出所提供的代码量和问题的一般性将花费太多时间。我只能简要地概述一下。

首先,在operator [] const和begin / end方法上对可变数据进行排序有点让人恐惧。即使对于并发读取访问,此类也不是线程安全的。处理多个线程可能不在该类的范围内,但是这种行为非常特殊,因此如果该类旨在用于非常通用的用途,则应该有充分的文档说明。

另一种选择是要求客户端对 vector 进行显式排序,并使用线性访问方法来获取数据,直到完成为止。这不像您的解决方案那样具有魔力,但是它将使您的类更安全地跨线程用于读取目的。

在我看来,您似乎没有借助探查器内联此代码。没有分析器的帮助,请勿执行此操作。我不只是在这里夸大其词。我的工作是每天与vtune和parallel studio一起使用raytracers和配置文件代码,并且内联这样的代码会对性能产生不利影响。最明显的情况是由于代码膨胀引起的,但还有第二种情况却不太明显,大多数人似乎忽略了这种情况。

即使对于单行访问器之类的东西,如果将它们全部内联,则会干扰优化器充分利用寄存器和其他优化的能力。优化的编译器在逐个函数的基础上使用编写良好的小型函数可以发挥最佳效果。它们通常在功能间级别上做得不好,如果您开始内联所有内容,结果类似于访问所有数据的一个大的平面函数,即使ICC(英特尔的优化编译器)也无法做到这一点。在应付方面做得很好。首先,编译器无法理解您的想法,因此内联所有内容会使执行较少的分支得到同等的优化,而执行更频繁的分支将得到优化(基本上会损害编译器优化公共(public)分支的能力)。

使用事件探查器,您可以看到这些更常执行的分支并有选择地内联它们,但绝不能从内联开始:事件探查器在告诉您要考虑的内联方面做得很好,但绝不应该内联。实际上,您将在启动时内联几乎所有内容,从而破坏了配置代码的能力。

至于公共(public)接口(interface),我可以看到它的全部目的是实现连续性并减少内存和访问时间(对于后端使用std::vector),但是鉴于其本质,我认为您最好提供一个接口(interface)类似于map<int, T>。例如,push_back和pop_back行为相当困惑。考虑仅使用插入和擦除方法的替代方案,以及可以创建新索引(键)或至少在第一步中执行此操作的非常量operator []。您可以提供一个仅使用const_reference的insert方法,该方法选择要分配的可用索引并返回它(它可能只是size()-如果您不关心间隙,则为1)。

从实现的 Angular 来看,该代码似乎足够简单。除了“反内联”您的代码外,我没有什么其他建议。

由于速度似乎是创造速度的动力之一,因此这里有一个小技巧。代替:

inline void sort() const {
    if (!sorted() && data_.size() > 0) {
        ...
}

考虑删除该初始的“if”,不要内联此函数。将其放在类定义之外。您对所有类型的只读访问案例都使用了sort,但这是一个异常(exception)情况:大多数读取访问应该对已排序的数据进行操作。当您遇到类似这样的特殊情况时,如果不内联函数并且将检查放在外面,则优化的编译器通常会做得更好。
inline const_reference operator[] (size_type i) const {
    CHECK_LT(i, size_);
    if (need_sort() )
        sort();
    ...
}

每天在分析器的帮助下完成微优化,我可以向您保证,在大多数优化的编译器(包括最新版本的GCC,ICC和MSVC)上,这通常会更快。粗略地说,原因是因为您的operator []函数将做更少的事情,并且访问的结果也更少(没有内联的排序方法只能在特殊情况下执行)。

最重要的是,我建议您捕获一个探查器并进行一些测试,以查看瓶颈所在。

关于c++ - sparse_vector模板类:如何清理它?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3125905/

相关文章:

c++ - 将多个 void* 复制到一个 vector 中

C++ STL : Why do STL data structures not provide a function for measuring the memory consumption?

c++ - 奇怪的运算符重载行为?

c++ - 在 vs2008 中使用 CurlPP

c++ - vector 复制构造函数 C++ : does it have to be linear time?

python - Pygame Vector2.as_polar() 和 Vector2.from_polar() 方法

c++ - 创建项目,从 Makefile 到 UNIX 中的静态/动态库

c++ - 在模板类上专门化模板仿函数

javascript - 转义 Dust.js 标签

C++:单例类模板导致链接错误?