c# - 如何在给定负载下运行 CPU(CPU 利用率百分比)?

标签 c# .net c#-4.0

是否可以卡住 Windows 任务管理器中显示的 CPU 使用率?我希望将负载卡住为程序中的特定值,如 20%、50%、70% 等。

(这是为了分析 PC 在 CPU 使用率方面消耗了多少电量。)

这可能吗?

最佳答案

我的第一个天真的尝试是生成 2 个线程作为核心——每个线程都具有最高优先级,然后在每个线程内运行一个忙循环并做一些工作。 (多于核心的线程就是“窃取”我可以从 Windows 中的其他线程获得的所有时间:-)

使用某种 API 来读取 CPU 负载(也许是 WMI 或性能计数器?)然后我会让每个线程从繁忙的循环中“屈服”(每个循环休眠一定时间)直到我得到反馈周期中的近似负载。

这个循环会 self 调整:负载太高,睡得更多。负荷太低,睡得少。这不是一门精确的科学,但我认为通过一些调整可以获得稳定的负载。

但是,我真的不知道 :-)

快乐编码。


此外,请考虑电源管理——有时它可以将 CPU 锁定在“最大百分比”。然后完全加载 CPU,它将达到该极限。 (至少,Windows 7 具有执行此操作的内置功能,具体取决于 CPU 和芯片组——可能有许多第 3 方工具。)

对于基于负载和温度等动态计时的新型 CPU,情况变得相当困惑。


这是我对 .NET 3.5 的“天真”方法的尝试。确保包括 System.Management 引用。

在我的系统上,任务管理器报告的 CPU 利用率徘徊在目标的百分之几内——平均值似乎非常接近。 YMMV,但有一些调整的灵 active 。

快乐编码(再次)。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Management;
using System.Threading;
using System.Diagnostics;

namespace CPULoad
{
    class Program
    {
        // What to try to get :-)
        static int TargetCpuUtilization = 50;
        // An average window too large results in bad harmonics -- keep it small.
        static int AverageWindow = 5;
        // A somewhat large number gets better results here.
        static int ThreadsPerCore = 8;
        // WMI is *very slow* compared to a PerformanceCounter.
        // It still works, but each cycle is *much* longer and it doesn't
        // exhibit as good of characteristics in maintaining a stable load.
        // (It also seems to run a few % higher).
        static bool UseWMI = false;
        // Not sure if this helps -- but just play about :-)
        static bool UseQuestionableAverage = true;

        static int CoreCount () {
            var sys = new ManagementObject("Win32_ComputerSystem.Name=\"" + Environment.MachineName + "\"");
            return int.Parse("" + sys["NumberOfLogicalProcessors"]);
        }

        static Func<int> GetWmiSampler () {
            var searcher = new ManagementObjectSearcher(
                @"root\CIMV2",
                "SELECT PercentProcessorTime FROM Win32_PerfFormattedData_PerfOS_Processor");
            return () => {
                var allCores = searcher.Get().OfType<ManagementObject>().First();
                return int.Parse("" + allCores["PercentProcessorTime"]);
            };
        }

        static Func<int> GetCounterSampler () {
            var cpuCounter = new PerformanceCounter {
                CategoryName = "Processor",
                CounterName = "% Processor Time",
                InstanceName = "_Total",
            };
            return () => {
                return (int)cpuCounter.NextValue();
            };
        }

        static Func<LinkedList<int>, int> StandardAverage () {
            return (samples) => {
                return (int)samples.Average();
            };    
        }

        // Bias towards newest samples
        static Func<LinkedList<int>, int> QuestionableAverage () {
            return (samples) => {
                var weight = 4.0;
                var sum = 0.0;
                var max = 0.0;
                foreach (var sample in samples) {
                    sum += sample * weight;
                    max += weight;
                    weight = Math.Min(4, Math.Max(1, weight * 0.8));
                }
                return (int)(sum / max);
            };
        }

        static void Main (string[] args) {
            var threadCount = CoreCount() * ThreadsPerCore;
            var threads = new List<Thread>();
            for (var i = 0; i < threadCount; i++) {
                Console.WriteLine("Starting thread #" + i);                
                var thread = new Thread(() => {
                    Loader(
                        UseWMI ? GetWmiSampler() : GetCounterSampler(),
                        UseQuestionableAverage ? QuestionableAverage() : StandardAverage());
                });
                thread.IsBackground = true;
                thread.Priority = ThreadPriority.Highest;
                thread.Start();
                threads.Add(thread);
            }
            Console.ReadKey();
            Console.WriteLine("Fin!");
        }

        static void Loader (Func<int> nextSample, Func<LinkedList<int>, int> average) {
            Random r = new Random();
            long cycleCount = 0;
            int cycleLength = 10;
            int sleepDuration = 15;
            int temp = 0;
            var samples = new LinkedList<int>(new[] { 50 });
            long totalSample = 0;

            while (true) {
                cycleCount++;
                var busyLoops = cycleLength * 1000;
                for (int i = 0; i < busyLoops; i++) {
                    // Do some work
                    temp = (int)(temp * Math.PI);
                }
                // Take a break
                Thread.Sleep(sleepDuration);

                {
                    // Add new sample
                    // This seems to work best when *after* the sleep/yield
                    var sample = nextSample();
                    if (samples.Count >= AverageWindow) {
                        samples.RemoveLast();
                    }
                    samples.AddFirst(sample);
                    totalSample += sample;
                }
                var avg = average(samples);
                // should converge to 0
                var conv = Math.Abs(TargetCpuUtilization - (int)(totalSample / cycleCount));

                Console.WriteLine(string.Format("avg:{0:d2} conv:{1:d2} sleep:{2:d2} cycle-length:{3}",
                    avg, conv, sleepDuration, cycleLength));
                // Manipulating both the sleep duration and work duration seems
                // to have the best effect. We don't change both at the same
                // time as that skews one with the other.
                // Favor the cycle-length adjustment.
                if (r.NextDouble() < 0.05) {
                    sleepDuration += (avg < TargetCpuUtilization) ? -1 : 1;
                    // Don't let sleep duration get unbounded upwards or it
                    // can cause badly-oscillating behavior.
                    sleepDuration = (int)Math.Min(24, Math.Max(0, sleepDuration));
                } else {
                    cycleLength += (avg < TargetCpuUtilization) ? 1 : -1;
                    cycleLength = (int)Math.Max(5, cycleLength);
                }
            }
        }
    }
}

虽然 Windows 是抢占式操作系统,但在 Kernel Mode 中运行的代码——比如司机——被更少的人抢占。虽然在 C# AFAIK 中不可行,但这应该会产生比上述方法更严格的负载控制方法,但也有更多的复杂性(以及使整个系统崩溃的能力:-)

Process.PriorityClass ,但将其设置为正常以外的任何值都会对我产生最不一致的行为。

关于c# - 如何在给定负载下运行 CPU(CPU 利用率百分比)?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5577098/

相关文章:

Linq OrderBy 但如果 "the"忽略第一个单词

c# - 优化泛型方法逻辑

c# - GridView 中的超链接列

c# - 在对象更改后更新列表中的对象

c# - C#winmm.dll mp3播放器快进方法?

c# - Try/Catch/Finally 使用加密资源

.net - schtasks.exe 与 ITaskScheduler

c# - 一种接受不同参数的方法

c# - Razor ViewEngine 临时编译.cs文件

c# - 使用自动映射器时无法从 'System.Collections.Generic.IEnumerable<x>' 转换为 'x'